Abstract
1. Two Pseudomonas strains isolated from soil metabolized 2,4-dichlorophenoxyacetate (2,4-D) as sole carbon source in mineral salts liquid medium. 2. 2,4-Dichlorophenoxyacetate cultures of Pseudomonas I (Smith, 1954) contained 2,4-dichlorophenol, 2-chlorophenol, 3,5-dichlorocatechol and α-chloromuconate, the last as a major metabolite. 3. Dechlorination at the 4(p)-position of the aromatic ring must therefore take place at some stages before ring fission. 4. Pseudomonas N.C.I.B. 9340 (Gaunt, 1962) cultures metabolizing 2,4-dichlorophenoxyacetate contained 2,4-dichloro-6-hydroxyphenoxyacetate, 2,4-dichlorophenol, 3,5-dichlorocatechol and an unstable compound, probably αγ-dichloromuconate. 5. Cell-free extracts of the latter organism grown in 2,4-dichlorophenoxyacetate cultures contained an oxygenase that converted 3,5-dichlorocatechol into αγ-dichloromuconate, a chlorolactonase that in the presence of Mn2+ ions converted the dichloromuconate into γ-carboxymethylene-α-chloro-Δαβ-butenolide, and a delactonizing enzyme that gave α-chloromaleylacetate from this lactone. 6. Pathways of metabolism of 2,4-dichlorophenoxyacetate are discussed.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ando K., Kato A., Suzuki S. Isolation of 2.4-dichlorophenol from a soil fungus and its biological significance. Biochem Biophys Res Commun. 1970;39(6):1104–1107. doi: 10.1016/0006-291x(70)90672-8. [DOI] [PubMed] [Google Scholar]
- Dacre J. C., Scheline R. R., Williams R. T. The role of the tissues and gut flora in the metabolism of [14C]homoprotocatechuic acid in the rat and rabbit. J Pharm Pharmacol. 1968 Aug;20(8):619–625. doi: 10.1111/j.2042-7158.1968.tb09823.x. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Evans W. C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochem J. 1969 Jul;113(3):525–536. doi: 10.1042/bj1130525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans W. C., Smith B. S., Moss P., Fernley H. N. Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J. 1971 May;122(4):509–517. doi: 10.1042/bj1220509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAULKNER J. K., WOODCOCK D. METABOLISM OF 2,4-DICHLOROPHENOXYACETIC ACID ('2,4-D') BY ASPERGILLUS NIGER VAN TIEGH. Nature. 1964 Aug 22;203:865–865. doi: 10.1038/203865a0. [DOI] [PubMed] [Google Scholar]
- Gaunt J. K., Evans W. C. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes. Biochem J. 1971 May;122(4):533–542. doi: 10.1042/bj1220533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvath R. S. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J. 1970 Oct;119(5):871–876. doi: 10.1042/bj1190871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNOX W. E., EDWARDS S. W. The properties of maleylacetoacetate, the initial product of homogentisate oxidation in liver. J Biol Chem. 1955 Oct;216(2):489–498. [PubMed] [Google Scholar]
- LACK L. The enzymic oxidation of gentisic acid. Biochim Biophys Acta. 1959 Jul;34:117–123. doi: 10.1016/0006-3002(59)90239-2. [DOI] [PubMed] [Google Scholar]
- PETTY M. A. An introduction to the origin and biochemistry of microbial halometabolites. Bacteriol Rev. 1961 Jun;25:111–130. doi: 10.1128/br.25.2.111-130.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Silva G., Rodriguez D., Perez-Silva J. Dehydroxylation of caffeic acid by a bacterium isolated from rat faeces. Nature. 1966 Oct 15;212(5059):303–304. doi: 10.1038/212303b0. [DOI] [PubMed] [Google Scholar]
- SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]