Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 May;122(4):543–551. doi: 10.1042/bj1220543

Bacterial metabolism of 2,4-dichlorophenoxyacetate

W C Evans 1, B S W Smith 1, H N Fernley 1, J I Davies 1
PMCID: PMC1176812  PMID: 5123888

Abstract

1. Two Pseudomonas strains isolated from soil metabolized 2,4-dichlorophenoxyacetate (2,4-D) as sole carbon source in mineral salts liquid medium. 2. 2,4-Dichlorophenoxyacetate cultures of Pseudomonas I (Smith, 1954) contained 2,4-dichlorophenol, 2-chlorophenol, 3,5-dichlorocatechol and α-chloromuconate, the last as a major metabolite. 3. Dechlorination at the 4(p)-position of the aromatic ring must therefore take place at some stages before ring fission. 4. Pseudomonas N.C.I.B. 9340 (Gaunt, 1962) cultures metabolizing 2,4-dichlorophenoxyacetate contained 2,4-dichloro-6-hydroxyphenoxyacetate, 2,4-dichlorophenol, 3,5-dichlorocatechol and an unstable compound, probably αγ-dichloromuconate. 5. Cell-free extracts of the latter organism grown in 2,4-dichlorophenoxyacetate cultures contained an oxygenase that converted 3,5-dichlorocatechol into αγ-dichloromuconate, a chlorolactonase that in the presence of Mn2+ ions converted the dichloromuconate into γ-carboxymethylene-α-chloro-Δαβ-butenolide, and a delactonizing enzyme that gave α-chloromaleylacetate from this lactone. 6. Pathways of metabolism of 2,4-dichlorophenoxyacetate are discussed.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K., Kato A., Suzuki S. Isolation of 2.4-dichlorophenol from a soil fungus and its biological significance. Biochem Biophys Res Commun. 1970;39(6):1104–1107. doi: 10.1016/0006-291x(70)90672-8. [DOI] [PubMed] [Google Scholar]
  2. Dacre J. C., Scheline R. R., Williams R. T. The role of the tissues and gut flora in the metabolism of [14C]homoprotocatechuic acid in the rat and rabbit. J Pharm Pharmacol. 1968 Aug;20(8):619–625. doi: 10.1111/j.2042-7158.1968.tb09823.x. [DOI] [PubMed] [Google Scholar]
  3. Dutton P. L., Evans W. C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochem J. 1969 Jul;113(3):525–536. doi: 10.1042/bj1130525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans W. C., Smith B. S., Moss P., Fernley H. N. Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J. 1971 May;122(4):509–517. doi: 10.1042/bj1220509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FAULKNER J. K., WOODCOCK D. METABOLISM OF 2,4-DICHLOROPHENOXYACETIC ACID ('2,4-D') BY ASPERGILLUS NIGER VAN TIEGH. Nature. 1964 Aug 22;203:865–865. doi: 10.1038/203865a0. [DOI] [PubMed] [Google Scholar]
  6. Gaunt J. K., Evans W. C. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes. Biochem J. 1971 May;122(4):533–542. doi: 10.1042/bj1220533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horvath R. S. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J. 1970 Oct;119(5):871–876. doi: 10.1042/bj1190871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KNOX W. E., EDWARDS S. W. The properties of maleylacetoacetate, the initial product of homogentisate oxidation in liver. J Biol Chem. 1955 Oct;216(2):489–498. [PubMed] [Google Scholar]
  9. LACK L. The enzymic oxidation of gentisic acid. Biochim Biophys Acta. 1959 Jul;34:117–123. doi: 10.1016/0006-3002(59)90239-2. [DOI] [PubMed] [Google Scholar]
  10. PETTY M. A. An introduction to the origin and biochemistry of microbial halometabolites. Bacteriol Rev. 1961 Jun;25:111–130. doi: 10.1128/br.25.2.111-130.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perez-Silva G., Rodriguez D., Perez-Silva J. Dehydroxylation of caffeic acid by a bacterium isolated from rat faeces. Nature. 1966 Oct 15;212(5059):303–304. doi: 10.1038/212303b0. [DOI] [PubMed] [Google Scholar]
  12. SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES