Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Jul;123(3):293–329. doi: 10.1042/bj1230293

Biosynthesis of carotenoids and plant triterpenes.

T W Goodwin
PMCID: PMC1176962  PMID: 4331177

Full text

PDF
293-b2

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., Marsh S. The stereochemistry of the hydrogen elimination in the biological conversion of cholest-7-en-3-beta-ol into cholesterol. Biochem J. 1967 Feb;102(2):462–467. doi: 10.1042/bj1020462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akhtar M., Watkinson I. A., Rahimtula A. D., Wilton D. C., Munday K. A. The role of a cholesta-8,14-dien-3-beta-ol system in cholesterol biosynthesis. Biochem J. 1969 Mar;111(5):757–761. doi: 10.1042/bj1110757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bimpson T., Goad L. J., Goodwin T. W. The stereochemistry of hydrogen elimination at C-7,C-22 and C-23 during the conversion of cholesterol (cholest-5-en-3 beta-ol) into cholesta-5,7,22-trien-3 beta-ol by Tetrahymena pyriformis. Biochem J. 1969 Dec;115(4):857–858. doi: 10.1042/bj1150857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolger L. M., Rees H. H., Ghisalberti E. L., Goad L. J., Goodwin T. W. Biosynthesis of 24-ethylcholesta-5,22,25-trien-3-beta-ol, a new sterol from Clerodendrum campbellii. Biochem J. 1970 Jun;118(1):197–200. doi: 10.1042/bj1180197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buggy M. J., Britton G., Goodwin T. W. Stereochemistry of phytoene biosynthesis by isolated chloroplasts. Biochem J. 1969 Sep;114(3):641–643. doi: 10.1042/bj1140641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canonica L., Fiecchi A., Galli Kienle M., Scala A. The stereochemistry of hydrogen elimination in the biological conversion of 5 alpha-cholest-8-en-3 beta-ol to 5 alpha-cholest-7-en-3 beta-ol. Steroids. 1968 Jun;11(6):749–753. doi: 10.1016/s0039-128x(68)80091-1. [DOI] [PubMed] [Google Scholar]
  7. Canonica L., Fiecchi A., Kienle M. G., Scala A., Galli G., Paoletti E. G., Paoletti R. The fate of the 15-beta hydrogen of lanosterol in cholesterol biosynthesis. J Am Chem Soc. 1968 Jun 19;90(13):3597–3598. doi: 10.1021/ja01015a074. [DOI] [PubMed] [Google Scholar]
  8. Caspi E., Greig J. B., Ramm P. J., Varma K. R. Stereochemistry of tritium at C-1 and C-7 in cholesterol derived from (3R,2R)-2T-mevalonic acid. Tetrahedron Lett. 1968 Jul;(35):3829–3832. doi: 10.1016/s0040-4039(01)99112-9. [DOI] [PubMed] [Google Scholar]
  9. Charlton J. M., Treharne K. J., Goodwin T. W. Incorporation of 2-[14C]mevalonic acid into phytoene by isolated chloroplasts. Biochem J. 1967 Oct;105(1):205–212. doi: 10.1042/bj1050205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies B. H. A novel sequence for phytoene dehydrogenation in Rhodospirillum rubrum. Biochem J. 1970 Jan;116(1):93–99. doi: 10.1042/bj1160093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies B. H. Alternative pathways of spirilloxanthin biosynthesis in Rhodospirillum rubrum. Biochem J. 1970 Jan;116(1):101–110. doi: 10.1042/bj1160101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies B. H., Jones D., Goodwin T. W. Studies in carotenogenesis. 30. The problem of lycopersene formation in Neurospora crassa. Biochem J. 1963 May;87(2):326–329. doi: 10.1042/bj0870326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Souza N. J., Ghisalberti E. L., Rees H. H., Goodwin T. W. Studies on insect moulting hormones: biosynthesis of ponasterone A and ecdysterone from [2-14C] mevalonate in Taxus baccata. Biochem J. 1969 Oct;114(4):895–896. doi: 10.1042/bj1140895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eppenberger U., Hirth L., Ourisson G. Anaerobische Cyclisierung von Squalen-2,3-epoxyd zu Cycloartenol in Gewebekulturen von Nicotiana tabacum L. Eur J Biochem. 1969 Mar;8(2):180–183. doi: 10.1111/j.1432-1033.1969.tb00512.x. [DOI] [PubMed] [Google Scholar]
  15. GOODWIN T. W., LAND D. G., SISSINS M. E. Studies in carotenogenesis. 23. The nature of the carotenoids in the photosynthetic bacterium Rhodopseudomonas spheroides (athiorhodaceae). Biochem J. 1956 Nov;64(3):486–492. doi: 10.1042/bj0640486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GOODWIN T. W., OSMAN H. G. Studies in carotenogenesis. 10. Spirilloxanthin synthesis by washed cells of Rhodospirillum rubrum. Biochem J. 1954 Feb;56(2):222–230. doi: 10.1042/bj0560222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GOODWIN T. W., OSMAN H. G. Studies in carotenogenesis. 9. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacterium Rhodospirillum rubrum. Biochem J. 1953 Mar;53(4):541–546. doi: 10.1042/bj0530541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GOODWIN T. W. Studies in carotenogenesis. 24. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during autumn necrosis. Biochem J. 1958 Mar;68(3):503–511. doi: 10.1042/bj0680503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gershengorn M. C., Smith A. R., Goulston G., Goad L. J., Goodwin T. W., Haines T. H. The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry. 1968 May;7(5):1698–1706. doi: 10.1021/bi00845a012. [DOI] [PubMed] [Google Scholar]
  20. Goad L. J., Gibbons G. F., Bolger L. M., Rees H. H., Goodwin T. W. Incorporation of (2-14C, (5r)-5-3H1) mevalonic acid into cholesterol by a rat liver homogenate and into beta-sitosterol and 28-isofucosterol by larix decidua leaves. Biochem J. 1969 Oct;114(4):885–892. doi: 10.1042/bj1140885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goad L. J., Goodwin T. W. Studies in phytosterol biosynthesis: observations on the biosynthesis of fucosterol in the marine brown alga Fucus spiralis. Eur J Biochem. 1969 Feb;7(4):502–508. doi: 10.1111/j.1432-1033.1969.tb19636.x. [DOI] [PubMed] [Google Scholar]
  22. Goad L. J., Goodwin T. W. Studies on phytosterol biosynthesis: the sterols of Larix decidua leaves. Eur J Biochem. 1967 May;1(3):357–362. doi: 10.1007/978-3-662-25813-2_49. [DOI] [PubMed] [Google Scholar]
  23. Goad L. J., Goodwin T. W. The biosynthesis of sterols in higher plants. Biochem J. 1966 Jun;99(3):735–746. doi: 10.1042/bj0990735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goad L. J., Hammam A. S., Dennis A., Goodwin T. W. Biosynthesis of the phytosterol side chain. Nature. 1966 Jun 25;210(5043):1322–1324. doi: 10.1038/2101322a0. [DOI] [PubMed] [Google Scholar]
  25. Goad L. J., Williams B. L., Goodwin T. W. Studies on phytosterol biosynthesis. The presence of 4-alpha,14-alpha-dimethyl-delta-8,24(28)-ergostadien-3-beta-ol in grapefruit peel and its co-occurrece with cycloeucalenol in higher plant tissues. Eur J Biochem. 1967 Dec;3(2):232–236. doi: 10.1111/j.1432-1033.1967.tb19521.x. [DOI] [PubMed] [Google Scholar]
  26. Hall J., Smith A. R., Goad L. J., Goodwin T. W. The conversion of lanosterol, cycloartenol and 24-methylenecycloartanol into poriferasterol by Ochromonas malhamensis. Biochem J. 1969 Mar;112(1):129–130. doi: 10.1042/bj1120129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hemming F. W. Polyprenols. Biochem Soc Symp. 1970;29:105–117. [PubMed] [Google Scholar]
  28. Hewlins M. J., Ehrhardt J. D., Hirth L., Ourisson G. The conversion of [14C]cycloartenol and [14C)lanosterol into phytosterols by cultures of Nicotiana tabacum. Eur J Biochem. 1969 Mar;8(2):184–188. doi: 10.1111/j.1432-1033.1969.tb00513.x. [DOI] [PubMed] [Google Scholar]
  29. Howes C. D., Batra P. P. Accumulation of lycopene and inhibition of cyclic carotenoids in Mycobacterium in the presence of nicotine. Biochim Biophys Acta. 1970 Oct 27;222(1):174–179. doi: 10.1016/0304-4165(70)90362-4. [DOI] [PubMed] [Google Scholar]
  30. JENSEN S. L., COHEN-BAZIRE G., STANIER R. Y. Biosynthesis of carotenoids in purple bacteria: a reevaluation based on considerations of chemical structure. Nature. 1961 Dec 23;192:1168–1172. doi: 10.1038/1921168a0. [DOI] [PubMed] [Google Scholar]
  31. JUNGALWALA F. B., PORTER J. W. THE CONFIGURATION OF PHYTOENE. Arch Biochem Biophys. 1965 May;110:291–299. doi: 10.1016/0003-9861(65)90121-9. [DOI] [PubMed] [Google Scholar]
  32. Jungalwala F. B., Porter J. W. Biosynthesis of phytoene from isopentenyl and farnesyl pyrophosphates by a partially purified tomato enzyme system. Arch Biochem Biophys. 1967 Mar;119(1):209–219. doi: 10.1016/0003-9861(67)90448-1. [DOI] [PubMed] [Google Scholar]
  33. Kushwaha S. C., Subbarayan C., Beeler D. A., Porter J. W. The conversion of lycopene-15,15'-3H to cyclic carotenes by soluble extracts of higher plant plastids. J Biol Chem. 1969 Jul 10;244(13):3635–3642. [PubMed] [Google Scholar]
  34. Malhotra H. C., Britton G., Goodwin T. W. A novel series of 1,2-dihydro carotenoids. Int Z Vitaminforsch. 1970;40(3):315–322. [PubMed] [Google Scholar]
  35. Malhotra H. C., Britton G., Goodwin T. W. The occurrence of hydroxy-derivatives of phytoene and phytofluene in diphenylamine-inhibited cultures of Rhodospirillum rubrum. FEBS Lett. 1970 Feb 25;6(4):334–336. doi: 10.1016/0014-5793(70)80091-6. [DOI] [PubMed] [Google Scholar]
  36. Mercer E. I., Davies B. H., Goodwin T. W. Studies in carotenogenesis. 29. Attempts to detect lycopersene in higher plants. Biochem J. 1963 May;87(2):317–325. doi: 10.1042/bj0870317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Oster M. O., West C. A. Biosynthesis of trans-geranylgeranyl pyrophosphate in endosperm of Echinocystis macrocarpa Greene. Arch Biochem Biophys. 1968 Sep 20;127(1):112–123. doi: 10.1016/0003-9861(68)90207-5. [DOI] [PubMed] [Google Scholar]
  38. PETZOLD E. N., QUACKENBUSH F. W., McQUISTAN M. Zeacarotenes, new provitamins A from corn. Arch Biochem Biophys. 1959 May;82(1):117–124. doi: 10.1016/0003-9861(59)90096-7. [DOI] [PubMed] [Google Scholar]
  39. PORTER J. W., ANDERSON D. G. The biosynthesis of carotenes. Arch Biochem Biophys. 1962 Jun;97:520–528. doi: 10.1016/0003-9861(62)90116-9. [DOI] [PubMed] [Google Scholar]
  40. Paliokas A. M., Schroepfer G. J., Jr Enzymatic stereospecificity in the conversion of delta-7-cholesten-3-beta-ol to 7-dehydrocholesterol. Biochem Biophys Res Commun. 1967 Mar 21;26(6):736–741. doi: 10.1016/s0006-291x(67)80135-9. [DOI] [PubMed] [Google Scholar]
  41. Paliokas A. M., Schroepfer G. J., Jr Stereospecificity in the enzymatic conversion of delta-7-cholesten-3-beta-ol to 7-dehydrocholesterol. J Biol Chem. 1968 Feb 10;243(3):453–464. [PubMed] [Google Scholar]
  42. Popják G., Cornforth J. W. Substrate stereochemistry in squalene biosynthesis: The first Ciba medal lecture. Biochem J. 1966 Dec;101(3):553.b4–553568. [PMC free article] [PubMed] [Google Scholar]
  43. Raab K. H., De Souza N. J., Nes W. R. The H-migration in the alkylation of sterols at C-24. Biochim Biophys Acta. 1968 Jul 1;152(4):742–748. doi: 10.1016/0005-2760(68)90120-3. [DOI] [PubMed] [Google Scholar]
  44. Ramm P. J., Caspi E. The stereochemistry of tritium at carbon atoms 1, 7, and 15 in cholesterol derived from (3R,2R)-(2-3H)-mevalonic acid. J Biol Chem. 1969 Nov 25;244(22):6064–6073. [PubMed] [Google Scholar]
  45. Rees H. H., Britton G., Goodwin T. W. The biosynthesis of beta-amyrin. Mechanism of squalene cyclization. Biochem J. 1968 Feb;106(3):659–665. doi: 10.1042/bj1060659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rees H. H., Goad L. J., Goodwin T. W. 2,3-oxidosqualene cycloartenol cyclase from Ochromonas malhamensis. Biochim Biophys Acta. 1969 Jun 10;176(4):892–894. [PubMed] [Google Scholar]
  47. Rees H. H., Goad L. J., Goodwin T. W. Cyclization of 2,3-oxidosqualene to cycloartenol in a cell-free system from higher plants. Tetrahedron Lett. 1968 Feb;6:723–725. doi: 10.1016/s0040-4039(00)75620-6. [DOI] [PubMed] [Google Scholar]
  48. Rees H. H., Goad L. J., Goodwin T. W. Studies in phytosterol biosynthesis. Mechanism of biosynthesis of cycloartenol. Biochem J. 1968 Apr;107(3):417–426. doi: 10.1042/bj1070417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rees H. H., Mercer E. I., Goodwin T. W. The stereospecific biosynthesis of plant sterols and alpha- and beta-amyrin. Biochem J. 1966 Jun;99(3):726–734. doi: 10.1042/bj0990726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. SIMPSON K. L., NAKAYAMA T. O., CHICHESTER C. O. BIOSYNTHESIS OF YEAST CAROTENOIDS. J Bacteriol. 1964 Dec;88:1688–1694. doi: 10.1128/jb.88.6.1688-1694.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Scharf S. S., Simpson K. L. Attempts to detect lycopersene formation in yeast. Biochem J. 1968 Jan;106(1):311–315. doi: 10.1042/bj1060311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sharpless K. B., Snyder T. E., Spencer T. A., Maheshwari K. K., Nelson J. A. Biological demethylation of 4,4-dimethyl sterols, Evidence for enzymic epimerization of the 4beta-methyl group prior to its oxidative removal. J Am Chem Soc. 1969 Jun 4;91(12):3394–3396. doi: 10.1021/ja01040a065. [DOI] [PubMed] [Google Scholar]
  53. Subbarayan C., Kushwaha S. C., Suzue G., Porter J. W. Enzymatic conversion of isopentenyl pyrophosphate-4-14C and phytoene-14C to acyclic carotenes by an ammonium sulfate-precipitated spinach enzyme system. Arch Biochem Biophys. 1970 Apr;137(2):547–557. doi: 10.1016/0003-9861(70)90472-8. [DOI] [PubMed] [Google Scholar]
  54. Tefft R. E., Goodwin T. W., Simpson K. L. Aspects of the stereochemistry of torularhodin biosynthesis. Biochem J. 1970 May;117(5):921–927. doi: 10.1042/bj1170921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thornber J. P., Olson J. M., Williams D. M., Clayton M. L. Isolation of the reaction center of Rhodopseudomonas viridis. Biochim Biophys Acta. 1969 Feb 25;172(2):351–354. doi: 10.1016/0005-2728(69)90083-8. [DOI] [PubMed] [Google Scholar]
  56. VOLK W. A., PENNINGTON D. The pigments of the photosynthetic bacterium Rhodomicrobium vannielii. J Bacteriol. 1950 Feb;59(2):169–170. doi: 10.1128/jb.59.2.169-170.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Walton T. J., Britton G., Goodwin T. W. Biosynthesis of xanthophylls in higher plants: stereochemistry of hydroxylation at C-3. Biochem J. 1969 Apr;112(3):383–385. doi: 10.1042/bj1120383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Williams R. J., Britton G., Charlton J. M., Goodwin T. W. The stereospecific biosynthesis of phytoene and polyunsaturated carotenes. Biochem J. 1967 Sep;104(3):767–777. doi: 10.1042/bj1040767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Williams R. J., Britton G., Goodwin T. W. A possible mechanism for the biosynthesis of eschscholtzxanthin. Biochim Biophys Acta. 1966 Jul 27;124(1):200–203. doi: 10.1016/0304-4165(66)90333-3. [DOI] [PubMed] [Google Scholar]
  60. Williams R. J., Britton G., Goodwin T. W. The biosynthesis of cyclic carotenes. Biochem J. 1967 Oct;105(1):99–105. doi: 10.1042/bj1050099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wilton D. C., Munday K. A., Skinner S. J., Akhtar M. The biological conversion of 7-dehydrocholesterol into cholesterol and comments on the reduction of double bonds. Biochem J. 1968 Feb;106(4):803–810. doi: 10.1042/bj1060803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. van Aller R. T., Chikamatsu H., de Souza N. J., John J. P., Nes W. R. The metabolic role of the 24-ethylidenecholesterols. Biochem Biophys Res Commun. 1968 Jun 10;31(5):842–844. doi: 10.1016/0006-291x(68)90640-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES