Abstract
1. Addition of 2mm-thymidine, although resulting in the cessation of cell division, allows the continuation of phospholipid and protein synthesis and results in an increase in mean cell volume for at least 15h. 2. 5-Fluorouracil 2′-deoxyriboside inhibits cell division but differs from thymidine by inhibiting the synthesis of phospholipid and protein in a more marked manner. 3. The relation between these results and the P815Y cell cycle is discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOSCH L., HARBERS E., HEIDELBERGER C. Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 1958 Apr;18(3):335–343. [PubMed] [Google Scholar]
- Bergeron J. J.M., Warmsley A. M.H., Pasternak C. A. The timing of phospholipid synthesis in neoplastic mast cells. FEBS Lett. 1969 Aug;4(3):161–163. doi: 10.1016/0014-5793(69)80223-1. [DOI] [PubMed] [Google Scholar]
- Bergeron J. J., Warmsley A. M., Pasternak C. A. Phospholipid synthesis and degradation during the life-cycle of P815Y mast cells synchronized with excess of thymidine. Biochem J. 1970 Sep;119(3):489–492. doi: 10.1042/bj1190489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EATON M. D., SCALA A. R., JEWELL M. Methods for measuring viability of ascites cells dye exclusion and respiration as affected by depletion, poisons, and viruses. Cancer Res. 1959 Oct;19:945–953. [PubMed] [Google Scholar]
- HARBERS E., CHAUDHURI N. K., HEIDELBERGER C. Studies on fluorinated pyrimidines. VIII. Further biochemical and metabolic investigations. J Biol Chem. 1959 May;234(5):1255–1262. [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V. Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide. Biochem J. 1940 Nov;34(10-11):1383–1395. doi: 10.1042/bj0341383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAUL J., HAGIWARA A. A kinetic study of the action of 5-fluoro-2'-deoxyuridine on synthetic processes in mammalian cells. Biochim Biophys Acta. 1962 Aug 20;61:243–249. doi: 10.1016/0926-6550(62)90086-5. [DOI] [PubMed] [Google Scholar]
- PUCK T. T. STUDIES OF THE LIFE CYCLE OF MAMMALIAN CELLS. Cold Spring Harb Symp Quant Biol. 1964;29:167–176. doi: 10.1101/sqb.1964.029.01.021. [DOI] [PubMed] [Google Scholar]
- Pasternak C. A., Bergeron J. J. Turnover of mammalian phospholipids. Stable and unstable components in neoplastic mast cells. Biochem J. 1970 Sep;119(3):473–480. doi: 10.1042/bj1190473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studzinski G. P., Lambert W. C. Thymidine as a synchronizing agent. I. Nucleic acid and protein formation in synchronous HeLa cultures treated with excess thymidine. J Cell Physiol. 1969 Apr;73(2):109–117. doi: 10.1002/jcp.1040730204. [DOI] [PubMed] [Google Scholar]
- Warmsley A. M., Pasternak C. A. The use of conventional and zonal centrifugation to study the life cycle of mammalian cells. Phospholipid and macromolecular synthesis in neoplastic mast cells. Biochem J. 1970 Sep;119(3):493–499. doi: 10.1042/bj1190493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe I., Okada S. Effects of temperature on growth rate of cultured mammalian cells (L5178Y). J Cell Biol. 1967 Feb;32(2):309–323. doi: 10.1083/jcb.32.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]