Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Jul;123(4):539–549. doi: 10.1042/bj1230539

A role for phospholipids in the binding and metabolism of drugs by hepatic microsomes. Use of the fluorescent hydrophobic probe 1-anilinonaphthalene-8-sulphonate

T E Eling 1,*, R P DiAugustine 1,
PMCID: PMC1176993  PMID: 5126906

Abstract

1. The pretreatment of rat liver microsomes with phospholipase C or D decreased the N-demethylation of (+)-benzphetamine. The hydroxylation of aniline was essentially unchanged by pretreatment of microsomes with phospholipase C. 2. Some components of the microsomal mixed-function oxidase system were impaired by phospholipases. 3. The fluorescence of 1-anilinonaphthalene-8-sulphonate (ANS) was greatly enhanced by microsomes. Phospholipase C or D markedly decreased ANS–microsome fluorescence. Quantum yield of ANS–microsome fluorescence appeared to be related directly to phospholipid content of microsomes. 4. Most of the drugs studied enhanced ANS–microsome fluorescence. Warfarin, however, displaced ANS fluorescence competitively from microsomes. The latter effect was postulated as being due to warfarin competing with ANS for the cationic site on microsomal phosphatidylcholine. 5. ANS fluorescence was also increased by the presence of phospholipid micelles. The fluorescence of ANS–phosphatidylcholine micelles was modified by warfarin and (+)-benzphetamine in a manner similar to that observed with microsomes. Warfarin decrease of fluorescence was absent when ANS was bound to phosphatidic acid, which lacks a cationic site. 6. Trypsin pretreatment of microsomes did not modify ANS–microsome fluorescence, including drug-induced changes. 7. It was postulated that phospholipids have a permissive role in the metabolism of most drugs by hepatic microsomes and that the ANS probe might reflect interactions of compounds with microsomal membrane phospholipids.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLETON H. D., LA DU B. N., Jr, LEVY B., STEELE J. M., BRODIE B. B. A chemical method for the determination of free choline in plasma. J Biol Chem. 1953 Dec;205(2):803–813. [PubMed] [Google Scholar]
  2. Azzi A., Chance B., Radda G. K., Lee C. P. A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc Natl Acad Sci U S A. 1969 Feb;62(2):612–619. doi: 10.1073/pnas.62.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P. Phospholipids as ion exchangers: implications for a possible role in biological membrane excitability and anesthesia. Biochim Biophys Acta. 1967 Sep 9;135(4):653–668. doi: 10.1016/0005-2736(67)90096-x. [DOI] [PubMed] [Google Scholar]
  4. Chapman D., Kamat V. B., de Gier J., Penkett S. A. Nuclear magnetic resonance studies of erythrocyte membranes. J Mol Biol. 1968 Jan 14;31(1):101–114. doi: 10.1016/0022-2836(68)90058-2. [DOI] [PubMed] [Google Scholar]
  5. DAWSON R. M. Liver glycerylphosphorylcholine diesterase. Biochem J. 1956 Apr;62(4):689–693. doi: 10.1042/bj0620689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallner G., Siekevitz P., Palade G. E. Phospholipids in hepatic microsomal membranes during development. Biochem Biophys Res Commun. 1965 Jul 12;20(2):142–148. doi: 10.1016/0006-291x(65)90337-2. [DOI] [PubMed] [Google Scholar]
  7. Di Augustine R. P., Fouts J. R. The effects of unsaturated fatty acids on hepatic microsomal drug metabolism and cytochrome P-450. Biochem J. 1969 Nov;115(3):547–554. doi: 10.1042/bj1150547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duttera S. M., Byrne W. L., Ganoza M. C. Studies on the phospholipid requirement of glucose 6-phosphatase. J Biol Chem. 1968 May 10;243(9):2216–2228. [PubMed] [Google Scholar]
  9. GIBSON K. D., WILSON J. D., UDENFRIEND S. The enzymatic conversion of phospholipid ethanolamine to phospholipid choline in rat liver. J Biol Chem. 1961 Mar;236:673–679. [PubMed] [Google Scholar]
  10. Gigon P. L., Gram T. E., Gillette J. R. Studies on the rate of reduction of hepatic microsomal cytochrome P-450 by reduced nicotinamide adenine dinucleotide phosphate: effect of drug substrates. Mol Pharmacol. 1969 Mar;5(2):109–122. [PubMed] [Google Scholar]
  11. Glaser M., Simpkins H., Singer S. J., Sheetz M., Chan S. I. On the interactions of lipids and proteins in the red blood cell membrane. Proc Natl Acad Sci U S A. 1970 Mar;65(3):721–728. doi: 10.1073/pnas.65.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver. J Lipid Res. 1968 Nov;9(6):720–729. [PubMed] [Google Scholar]
  13. Graham A. B., Wood G. C. The phospholipid-dependence of UDP-glucuronyltransferase. Biochem Biophys Res Commun. 1969 Nov 6;37(4):567–575. doi: 10.1016/0006-291x(69)90846-8. [DOI] [PubMed] [Google Scholar]
  14. Heller M., Arad R. Properties of the phospholipase D from peanut seeds. Biochim Biophys Acta. 1970 Jul 14;210(2):276–286. doi: 10.1016/0005-2760(70)90172-4. [DOI] [PubMed] [Google Scholar]
  15. Heller M., Shapiro B. Enzymic hydrolysis of sphingomyelin by rat liver. Biochem J. 1966 Mar;98(3):763–769. doi: 10.1042/bj0980763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hewick D. S., Fouts J. R. Effects of storage on hepatic microsomal cytochromes and substrate-induced difference spectra. Biochem Pharmacol. 1970 Feb;19(2):457–472. doi: 10.1016/0006-2952(70)90201-7. [DOI] [PubMed] [Google Scholar]
  17. Hutterer F., Bacchin P. G., Raisfeld I. H., Schenkman J. B., Schaffner F., Popper H. Alteration of microsomal biotransformation in the liver in cholestasis. Proc Soc Exp Biol Med. 1970 Feb;133(2):702–706. doi: 10.3181/00379727-133-34548. [DOI] [PubMed] [Google Scholar]
  18. Jones P. D., Wakil S. J. A requirement for phospholipids by the microsomal reduced diphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem. 1967 Nov 25;242(22):5267–5273. [PubMed] [Google Scholar]
  19. KORNBERG A., PRICER W. E., Jr Enzymatic esterification of alpha-glycerophosphate by long chain fatty acids. J Biol Chem. 1953 Sep;204(1):345–357. [PubMed] [Google Scholar]
  20. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS: V. METABOLISM OF PHOSPHATIDIC ACID. J Lipid Res. 1964 Jan;5:81–87. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lenard J., Singer S. J. Structure of membranes: reaction of red blood cell membranes with phospholipase C. Science. 1968 Feb 16;159(3816):738–739. doi: 10.1126/science.159.3816.738-a. [DOI] [PubMed] [Google Scholar]
  23. Lu A. Y., Strobel H. W., Coon M. J. Properties of a solubilized form of the cytochrome P-450-containing mixed-function oxidase of liver microsomes. Mol Pharmacol. 1970 May;6(3):213–220. [PubMed] [Google Scholar]
  24. Lumper L., Zubrzycki Z., Staudinger H. Inaktivierung mikrosomaler Enzyme durch Phospholipase D. Hoppe Seylers Z Physiol Chem. 1969 Feb;350(2):163–172. [PubMed] [Google Scholar]
  25. Martonosi A., Donley J., Halpin R. A. Sarcoplasmic reticulum. 3. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport. J Biol Chem. 1968 Jan 10;243(1):61–70. [PubMed] [Google Scholar]
  26. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  27. Orrenius S., Berg A., Ernster L. Effects ofrypsin on the electron transport systems of liver microsomes. Eur J Biochem. 1969 Nov;11(1):193–200. doi: 10.1111/j.1432-1033.1969.tb00760.x. [DOI] [PubMed] [Google Scholar]
  28. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  29. Rubalcava B., Martínez de Muñoz D., Gitler C. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes. Biochemistry. 1969 Jul;8(7):2742–2747. doi: 10.1021/bi00835a008. [DOI] [PubMed] [Google Scholar]
  30. STEIN Y., SHAPIRO B. The synthesis of neutral glycerides by fractions of rat liver homogenates. Biochim Biophys Acta. 1957 Apr;24(1):197–198. doi: 10.1016/0006-3002(57)90165-8. [DOI] [PubMed] [Google Scholar]
  31. Schenkman J. B., Remmer H., Estabrook R. W. Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol Pharmacol. 1967 Mar;3(2):113–123. [PubMed] [Google Scholar]
  32. Schulze H. U., Staudinger H. Anderungen im Gehalt der Phospholipoide von Lebermikrosomen unterschiedlich vorbehandelter Ratten und Meerschweinchen. Hoppe Seylers Z Physiol Chem. 1970 Feb;351(2):184–193. [PubMed] [Google Scholar]
  33. Strobel H. W., Lu A. Y., Heidema J., Coon M. J. Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J Biol Chem. 1970 Sep 25;245(18):4851–4854. [PubMed] [Google Scholar]
  34. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  35. Triggle D. J. A comment on "A Generalized Functional Role for Phospholipids". J Theor Biol. 1969 Dec;25(3):499–501. doi: 10.1016/s0022-5193(69)80037-8. [DOI] [PubMed] [Google Scholar]
  36. Trump B. F., Duttera S. M., Byrne W. L., Arstila A. U. Membrane structure: lipid-protein interactions in microsomal membranes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):433–440. doi: 10.1073/pnas.66.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tzur R., Shapiro B. Lipid synthesis in phospholipase C treated microsomes. Isr J Med Sci. 1969 Sep-Oct;5(5):971–974. [PubMed] [Google Scholar]
  38. Vanderkooi G., Green D. E. Biological membrane structure, I. The protein crystal model for membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):615–621. doi: 10.1073/pnas.66.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vanderkooi J., Martonosi A. Sarcoplasmic reticulum. 8. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes. Arch Biochem Biophys. 1969 Aug;133(1):153–163. doi: 10.1016/0003-9861(69)90499-8. [DOI] [PubMed] [Google Scholar]
  40. WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
  41. Waite M., van Deenen L. L. Hydrolysis of phospholipids and glycerides by rat-liver preparations. Biochim Biophys Acta. 1967 Jun 6;137(3):498–517. doi: 10.1016/0005-2760(67)90131-2. [DOI] [PubMed] [Google Scholar]
  42. Wallach D. F., Zahler P. H. Protein conformations in cellular membranes. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1552–1559. doi: 10.1073/pnas.56.5.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williamson D. G., O'Donnell V. J. Effects of adrenal mitochondrial lipid on the reduced nicotinamide-adenine dinucleotide phosphate supported 11 beta-hydroxylation of deoxycorticosterone. Interaction of phospholipid with cytochrome P-450. Biochemistry. 1969 Apr;8(4):1289–1300. doi: 10.1021/bi00832a001. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES