Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Sep;124(2):265–274. doi: 10.1042/bj1240265

The development of gluconeogenesis in rat liver. Controlling factors in the newborn

F J Ballard 1
PMCID: PMC1177141  PMID: 4333849

Abstract

1. Measurements in livers of rats delivered by Caesarian section show a rapid change in the relative proportion of adenine nucleotides. By 20min the ATP/ADP ratio had increased from 1.76 to 8.7 and the value of the relationship [ATP][AMP]/[ADP]2 increased from 1.0 to 4.4. These changes are dependent on the availability of oxygen to the animal. 2. The free [NAD+]/[NADH] ratio in the liver cytosol increases from 180 after delivery to reach a maximum of 1010 at 2h, before falling to 540 in the 24h-old animal. 3. The mitochondrial NAD redox potential also shows a sharp increase towards a more oxidized state in livers of delivered rats. 4. These results probably indicate that the foetal liver is hypoxic, with oxygenation occurring in the first hour after delivery. 5. Measurements in livers of naturally born rats 2min after birth also suggest that this tissue is hypoxic with an ATP/ADP ratio of 1.83 and a free [NAD+]/[NADH] ratio of 117. 6. Concentrations of intermediates in the gluconeogenic pathway have been determined in livers of foetal, 1h-old and 1-day-old rats. These experiments imply a facilitation of lactate dehydrogenase and glucose 6-phosphatase activities by 1h after birth, and a stimulation of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase steps by 1 day after birth. 7. The appearance of gluconeogenesis in livers of newborn rats seems therefore to involve an oxygenation stage followed by an increase in phosphoenolpyruvate carboxykinase activity.

Full text

PDF
265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R. C., Lo C. H., Weinhouse S. Dietary and hormonal effects on adenosine triphosphate: adenosine monophosphate phosphotransferase activity in rat liver. J Biol Chem. 1968 May 25;243(10):2538–2544. [PubMed] [Google Scholar]
  2. Anson R. W., Ballard F. J. The metabolic fate of the products of citrate cleavage. Adenosine triphosphate-citrate lyase and nicotinamide-adenine dinucleotide phosphate-linked malate dehydrogenase in foetal and adult liver from ruminants and non-ruminants. Biochem J. 1968 Aug;108(5):705–713. doi: 10.1042/bj1080705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson D. E., Walton G. M. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem. 1967 Jul 10;242(13):3239–3241. [PubMed] [Google Scholar]
  4. BALLARD F. J., OLIVER I. T. Glycogen metabolism in embryonic chick and neonatal rat liver. Biochim Biophys Acta. 1963 Jun 4;71:578–588. doi: 10.1016/0006-3002(63)91130-2. [DOI] [PubMed] [Google Scholar]
  5. BURCH H. B., LOWRY O. H., KUHLMAN A. M., SKERJANCE J., DIAMANT E. J., LOWRY S. R., VON DIPPE P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J Biol Chem. 1963 Jul;238:2267–2273. [PubMed] [Google Scholar]
  6. Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ballard F. J. Kinetic studies with cytosol and mitochondrial phosphoenolpyruvate carboxykinases. Biochem J. 1970 Dec;120(4):809–814. doi: 10.1042/bj1200809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ballard F. J. Regulation of gluconeogenesis during exposure of young rats to hypoxic conditions. Biochem J. 1971 Jan;121(2):169–178. doi: 10.1042/bj1210169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1966 May 25;241(10):2413–2420. [PubMed] [Google Scholar]
  10. Charbonneau R., Roberge A., Berlinguet L. Variation with age of the enzymes of the urea cycle and aspartate transcarbamylase in rat liver. Can J Biochem. 1967 Sep;45(9):1427–1432. doi: 10.1139/o67-168. [DOI] [PubMed] [Google Scholar]
  11. EMERY J. L. FUNCTIONAL ASYMMETRY OF THE LIVER. Ann N Y Acad Sci. 1963 Dec 30;111:37–44. doi: 10.1111/j.1749-6632.1963.tb36947.x. [DOI] [PubMed] [Google Scholar]
  12. Exton J. H., Park C. R. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1424–1433. [PubMed] [Google Scholar]
  13. Haeckel R., Haeckel H. The influence of alanine on the glutamate/oxoglutarate x NH(+)(4) ratio in the guinea-pig liver. FEBS Lett. 1970 Jul 15;9(1):15–16. doi: 10.1016/0014-5793(70)80299-x. [DOI] [PubMed] [Google Scholar]
  14. Heldt H. W., Schwalbach K. The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem. 1967 Apr;1(2):199–206. doi: 10.1007/978-3-662-25813-2_31. [DOI] [PubMed] [Google Scholar]
  15. Krebs H. A., Veech R. L. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes. Adv Enzyme Regul. 1969;7:397–413. doi: 10.1016/0065-2571(69)90030-2. [DOI] [PubMed] [Google Scholar]
  16. Philippidis H., Ballard F. J. The development of gluconeogenesis in rat liver. Effects of glucagon and ether. Biochem J. 1970 Nov;120(2):385–392. doi: 10.1042/bj1200385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Philippidis H., Ballard F. J. The development of gluconeogenesis in rat liver: experiments in vivo. Biochem J. 1969 Jul;113(4):651–657. doi: 10.1042/bj1130651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rose I. A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1079–1086. doi: 10.1073/pnas.61.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Start C., Newsholme E. A. The effects of starvation and alloxan-diabetes on the contents of citrate and other metabolic intermediates in rat liver. Biochem J. 1968 Apr;107(3):411–415. doi: 10.1042/bj1070411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  21. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  23. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williamson J. R., Olson M. S., Herczeg B. E., Coles H. S. Control of citrate formation in rat liver mitochondria. Biochem Biophys Res Commun. 1967 Jun 9;27(5):595–600. doi: 10.1016/s0006-291x(67)80029-9. [DOI] [PubMed] [Google Scholar]
  25. Williamson J. R., Scholz R., Browning E. T. Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4617–4627. [PubMed] [Google Scholar]
  26. Williamson J. R., Scholz R., Browning E. T., Thurman R. G., Fukami M. H. Metabolic effects of ethanol in perfused rat liver. J Biol Chem. 1969 Sep 25;244(18):5044–5054. [PubMed] [Google Scholar]
  27. Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yeung D., Oliver I. T. Development of gluconeogenesis in neonatal rat liver. Effect of premature delivery. Biochem J. 1967 Dec;105(3):1229–1233. doi: 10.1042/bj1051229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. von HOLT, SCHMIDT H., FELDMANN H., HALLMANN I. [The metabolism of blood glucose]. Biochem Z. 1961;334:524–533. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES