Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2024 Dec 20;599(2):166–167. doi: 10.1002/1873-3468.15073

Transcription‐coupled repair – mechanisms of action, regulation, and associated human disorders

Yuka Nakazawa 1,2, Yasuyoshi Oka 1,2, Tomoko Matsunaga 1,2, Tomoo Ogi 1,2,3,4,
PMCID: PMC11771657  PMID: 39704188

Abstract

The transcription‐coupled repair (TCR) pathway resolves transcription‐blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR‐associated genes cause disorders like Cockayne syndrome, UV‐sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS. TCR safeguards transcription, linking its failure to neurodegeneration and disease phenotypes.

graphic file with name FEB2-599-166-g001.jpg

Keywords: AMeDS (aplastic anemia, and dwarfism syndrome), Cockayne syndrome (CS), DNA‐protein crosslinks (DPCs), mental retardation, nucleotide excision repair (NER), RNA polymerase II (RNAPII), transcription‐coupled repair (TCR), trichothiodystrophy (TTD), UV‐sensitive syndrome (UVSS), xeroderma pigmentosum (XP)


Abbreviations

Transcription‐coupled repair

(TCR)

nucleotide excision repair

(NER)

RNA polymerase II

(RNAPII)

Cockayne syndrome

(CS)

aplastic anemia, mental retardation, and dwarfism syndrome

(AMeDS)

Fanconi anemia

(FA)

UV‐sensitive syndrome

(UVSS)

xeroderma pigmentosum

(XP)

trichothiodystrophy

(TTD)

cyclobutane pyrimidine dimer

(CPD)

DNA‐protein crosslink

(DPC)

inter‐strand crosslink

(ICL).

Review

The intricacies of life rely on the orchestrated expression of a wide variety of genes, a fundamental process for maintaining normal cellular function and the development of our body. At the center of this mechanism lies mRNA transcription, which involves transcribing genetic information encoded in DNA into mRNA molecules by RNA polymerase II (RNAPII). However, this process is frequently fraught with challenges, especially when DNA damage arise and the lesions remain unrepaired [1, 2, 3]. Both external and internal factors, such as environmental toxins and metabolic byproducts, constantly assault the integrity of DNA. When DNA damage occurs on the template strand of actively transcribed genes, it poses a significant obstacle to RNAPII progression. These transcriptional roadblocks, ranging from base adducts to crosslinks and strand breaks, can impede the movement of RNAPII along the DNA template, resulting in the loss of precise transcriptional profiles. These profiles are essential for the timely and accurate expression of gene sets required for proper cellular functions. Consequently, aberrant gene expression may lead to cellular malfunctions and global abnormalities within the organism. To overcome transcriptional stresses, stalled RNAPII complexes activate cellular signal responses, leading to either temporary shutdown of transcription or apoptosis. Therefore, cells employ a specialised mechanism called transcription‐coupled repair (TCR) to resolve cytotoxic transcription‐blocking lesions and resume transcription, thereby maintaining cellular viability [4].

The TCR pathway operates in concert with the transcription machinery to detect and remove DNA lesions specifically from the transcribed DNA strand [5]. Major issues arise when the lesions are compact in size, and the strand with DNA damage encounters RNAPII, causing it to stall and impede forward translocation [6]. Cockayne syndrome (CS) is a rare hereditary progeria that is compromised in handling such situations, caused by mutations in either the ERCC6/CSB gene or the ERCC8/CSA gene [7, 8]. When RNAPII stalls, the CSB protein ‐an ATP‐dependent chromatin‐remodeling factor‐ plays a crucial role in recruiting the Cullin RING E3 ubiquitin ligase complex 4 (CRL4) along with the RNAPII‐specific adaptor protein CSA [9]. The CSB/CSA‐CRL4 complex facilitates a single DNA damage‐induced ubiquitination of the largest subunit of RNAPII at the RPB1‐Lys1268 residue [10], supported by the interaction between CSA and ELOF1 [11]. It has been demonstrated that compromising the RPB1‐K1268 ubiquitination by introducing a lysine‐to‐arginine single amino acid substitution in mice (Polr2a K1268R), combined with a damage‐overloading genetic background, recapitulates major CS phenotypes [10]. This suggests that the RNAPII ubiquitination is a crucial signaling mechanism for preventing CS manifestations caused by persistent RNAPII stalling at DNA lesions and interruptions in transcription [10, 12]. Recent studies report that much bulkier DNA lesions, such as DNA‐protein crosslinks (DPCs), where RNAPII cannot access the damaged site, can also be handled by CSB [13, 14, 15]. Such DPCs, especially histone‐DPCs, are preprocessed by VCP/p97 and the proteasome, degrading them to remnant peptides before they can be removed by the TCR pathway [13]. The lack of CSA or CSB protein functions in CS patients causes severe neurological phenotypes. However, the specific endogenous DNA damage that induces transcription roadblocks and leads to CS has not been identified. DPCs are a likely candidate and are known to be induced by endogenous aldehydes, such as formaldehyde generated from one‐carbon metabolites like those produced during histone demethylation and one‐carbon metabolism [16]. This is supported by observations in a very rare genetic disorder known as AMeDS (aplastic anemia, mental retardation, and dwarfism syndrome), where due to the absence of enzymes for clearing endogenous aldehydes (encoded by ADH5 and ALDH2) [13, 17, 18], patients exhibit CS‐like clinical features along with haematological abnormalities resembling those observed in Fanconi anemia (FA), a bone marrow failure syndrome [19]. TFIIS supports the RNAPII‐dependent cleavage of pre‐mRNA transcripts at cyclobutane pyrimidine dimer (CPD) lesions in vitro, thereby promoting resumption of RNA synthesis with the aid of CSB [20, 21]. However, in human cells, TFIIS‐mediated cleavage of RNA transcripts is indispensable only for the transcription restart of RNAPII from formaldehyde‐derived DPC lesions but not UV‐induced CPDs [13].

After the recognition and ubiquitination of stalled RNAPII by CSB/CSA, the ubiquitinated RPB1 recruits TFIIH, the DNA repair and transcription factor [22], with the help of UVSSA (UV‐stimulated scaffold protein A) [10]. UVSSA mutations have been identified in patients with UV‐sensitive syndrome (UVSS) [23, 24], who display acute sun sensitivity without any CS‐like devastating phenotypes [25], although cells derived from these patients show a complete absence of cellular TCR activity. The mild clinical features of UVSS may result from the prompt degradation of stalled RNAPII, preventing prolonged arrest at DNA lesions and ultimately signaling for apoptosis [24]. In the process of TFIIH recruitment, UVSSA interacts with the ubiquitin chain on RNAPII and the p62 subunit of TFIIH via the PH‐domain of p62 and the PH‐binding domain of UVSSA [10, 24, 26]. It also interacts with CSA and ELOF1, to support the complex formation [11]. USP7, which binds to UVSSA, inhibits the degradation of CSB and RNAPII by deubiquitinating excess ubiquitin chains [23, 27]. Afterward, UVSSA is ubiquitinated at the Lys414 residue, facilitating the transfer of TFIIH to RNAPII [10].

Subsequently, the helicases XPB and XPD in the TFIIH core complex unwind DNA around the lesion, with support from XPA and XPG. Loss of these XP proteins causes xeroderma pigmentosum (XP), a genodermatosis that predisposes individuals to skin cancer [28, 29]. Except for XP‐A (XPA‐defective), most XP patients do not exhibit a neurodegenerative phenotype; however, several cases with distinct mutations in ERCC3/XPB [30], ERCC2/XPD [31], or ERCC5/XPG [32] display the combined features of XP and CS (XPCS). In addition to these XPCS mutations, specific pathogenic variants in XPB, XPD, and the p8 subunit of TFIIH (TTDA, encoded by GTF2H5) can cause trichothiodystrophy (TTD) [33], which has similarities with CS but also includes sulphur‐deficient brittle hair [34]. XPCS and TTD are typically caused by TFIIH deficiency and may be distinct from CS‐A and CS‐B. During the loading of the nucleotide excision repair (NER) complex, stalled RNAPII is either backtracked or degraded, depending on the nature of DNA lesions, allowing for the recruitment of the NER incision endonucleases, ERCC1‐XPF (encoded by ERCC4) and XPG [35], to excise the DNA lesion. In exceptional cases, mutations in the ERCC1‐XPF endonuclease lead to the combined phenotypes of XP, CS, and FA (XPCSFA), because the shared 5′ damage incision machinery between NER and the inter‐strand crosslink (ICL) repair pathway, which is defective in FA [36]. After the removal of nucleotides containing damage, DNA polymerases and ligases eventually fill and seal the gap to complete the repair process [37, 38].

Taken together, TCR provides dual protection by activating DNA repair and processing DNA damage‐stalled RNAPII. This process triggers the assembly of the damage incision complex and facilitates the degradation of RNAPII, preventing prolonged stalling of transcription. Consequently, the fate of stalled RNAPII and maintaining precise transcription profiles are now recognised as crucial links between TCR and related human disorders, preventing transcription arrest and protecting against neurodegeneration.

Acknowledgements

This work was supported by funds from the AMED under Grant Number JP24ek0109765 to Y.N.; JP23ek0109678, JP23ek0109617 and JP24ek0109760 to T.O., Grants in Aid for Scientific Research KAKENHI from the Japan Society for the Promotion of Science (JP21H02399, JP21K19844 and JP24K02223 to Y.N.; JP20H00629 and JP23H00516 to T.O.), the JST FOREST Program (JPMJFR221E to Y.N.) at the Japan Science and Technology Agency, Takeda Science Foundation (to Y.N., Y.O. and T.O.), The Naito Foundation (to Y.N.) and The Uehara Memorial Foundation (to T.O.).

Edited by Donata Orioli

References

  • 1. van den Heuvel, D. , van der Weegen, Y. , Boer, D. E. C. , Ogi, T. & Luijsterburg, M. S. (2021) Transcription‐Coupled DNA Repair: From Mechanism to Human Disorder, Trends Cell Biol. 31, 359–371. [DOI] [PubMed] [Google Scholar]
  • 2. Jia, N. , Guo, C. , Nakazawa, Y. , van den Heuvel, D. , Luijsterburg, M. S. & Ogi, T. (2021) Dealing with transcription‐blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders, DNA Repair (Amst). 106, 103192. [DOI] [PubMed] [Google Scholar]
  • 3. Lans, H. , Hoeijmakers, J. H. J. , Vermeulen, W. & Marteijn, J. A. (2019) The DNA damage response to transcription stress, Nat Rev Mol Cell Biol. 20, 766–784. [DOI] [PubMed] [Google Scholar]
  • 4. Hanawalt, P. C. & Spivak, G. (2008) Transcription‐coupled DNA repair: two decades of progress and surprises, Nat Rev Mol Cell Biol. 9, 958–970. [DOI] [PubMed] [Google Scholar]
  • 5. Mellon, I. , Spivak, G. & Hanawalt, P. C. (1987) Selective removal of transcription‐blocking DNA damage from the transcribed strand of the mammalian DHFR gene, Cell. 51, 241–249. [DOI] [PubMed] [Google Scholar]
  • 6. Saxowsky, T. T. & Doetsch, P. W. (2006) RNA polymerase encounters with DNA damage: transcription‐coupled repair or transcriptional mutagenesis?, Chem Rev. 106, 474–488. [DOI] [PubMed] [Google Scholar]
  • 7. Laugel, V. (2013) Cockayne syndrome: the expanding clinical and mutational spectrum, Mech Ageing Dev. 134, 161–170. [DOI] [PubMed] [Google Scholar]
  • 8. Karikkineth, A. C. , Scheibye‐Knudsen, M. , Fivenson, E. , Croteau, D. L. & Bohr, V. A. (2017) Cockayne syndrome: Clinical features, model systems and pathways, Ageing Res Rev. 33, 3–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Kokic, G. , Wagner, F. R. , Chernev, A. , Urlaub, H. & Cramer, P. (2021) Structural basis of human transcription‐DNA repair coupling, Nature. 598, 368–372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Nakazawa, Y. , Hara, Y. , Oka, Y. , Komine, O. , van den Heuvel, D. , Guo, C. , Daigaku, Y. , Isono, M. , He, Y. , Shimada, M. , Kato, K. , Jia, N. , Hashimoto, S. , Kotani, Y. , Miyoshi, Y. , Tanaka, M. , Sobue, A. , Mitsutake, N. , Suganami, T. , Masuda, A. , Ohno, K. , Nakada, S. , Mashimo, T. , Yamanaka, K. , Luijsterburg, M. S. & Ogi, T. (2020) Ubiquitination of DNA Damage‐Stalled RNAPII Promotes Transcription‐Coupled Repair, Cell. 180, 1228–1244 e24. [DOI] [PubMed] [Google Scholar]
  • 11. van der Weegen, Y. , de Lint, K. , van den Heuvel, D. , Nakazawa, Y. , Mevissen, T. E. T. , van Schie, J. J. M. , San Martin Alonso, M. , Boer, D. E. C. , Gonzalez‐Prieto, R. , Narayanan, I. V. , Klaassen, N. H. M. , Wondergem, A. P. , Roohollahi, K. , Dorsman, J. C. , Hara, Y. , Vertegaal, A. C. O. , de Lange, J. , Walter, J. C. , Noordermeer, S. M. , Ljungman, M. , Ogi, T. , Wolthuis, R. M. F. & Luijsterburg, M. S. (2021) ELOF1 is a transcription‐coupled DNA repair factor that directs RNA polymerase II ubiquitylation, Nat Cell Biol. 23, 595–607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Tufegdzic Vidakovic, A. , Mitter, R. , Kelly, G. P. , Neumann, M. , Harreman, M. , Rodriguez‐Martinez, M. , Herlihy, A. , Weems, J. C. , Boeing, S. , Encheva, V. , Gaul, L. , Milligan, L. , Tollervey, D. , Conaway, R. C. , Conaway, J. W. , Snijders, A. P. , Stewart, A. & Svejstrup, J. Q. (2020) Regulation of the RNAPII Pool Is Integral to the DNA Damage Response, Cell. 180, 1245–1261 e21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Oka, Y. , Nakazawa, Y. , Shimada, M. & Ogi, T. (2024) Endogenous aldehyde‐induced DNA‐protein crosslinks are resolved by transcription‐coupled repair, Nat Cell Biol. 26, 784–796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Carnie, C. J. , Acampora, A. C. , Bader, A. S. , Erdenebat, C. , Zhao, S. , Bitensky, E. , van den Heuvel, D. , Parnas, A. , Gupta, V. , D'Alessandro, G. , Sczaniecka‐Clift, M. , Weickert, P. , Aygenli, F. , Gotz, M. J. , Cordes, J. , Esain‐Garcia, I. , Melidis, L. , Wondergem, A. P. , Lam, S. , Robles, M. S. , Balasubramanian, S. , Adar, S. , Luijsterburg, M. S. , Jackson, S. P. & Stingele, J. (2024) Transcription‐coupled repair of DNA‐protein cross‐links depends on CSA and CSB, Nat Cell Biol. 26, 797–810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. van Sluis, M. , Yu, Q. , van der Woude, M. , Gonzalo‐Hansen, C. , Dealy, S. C. , Janssens, R. C. , Somsen, H. B. , Ramadhin, A. R. , Dekkers, D. H. W. , Wienecke, H. L. , Demmers, J. , Raams, A. , Davo‐Martinez, C. , Llerena Schiffmacher, D. A. , van Toorn, M. , Hackes, D. , Thijssen, K. L. , Zhou, D. , Lammers, J. G. , Pines, A. , Vermeulen, W. , Pothof, J. , Demmers, J. A. A. , van den Berg, D. L. C. , Lans, H. & Marteijn, J. A. (2024) Transcription‐coupled DNA‐protein crosslink repair by CSB and CRL4(CSA)‐mediated degradation, Nat Cell Biol. 26, 770–783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Reingruber, H. & Pontel, L. B. (2018) Formaldehyde metabolism and its impact on human health, Current Opinion in Toxicology. 9, 28–34. [Google Scholar]
  • 17. Oka, Y. , Hamada, M. , Nakazawa, Y. , Muramatsu, H. , Okuno, Y. , Higasa, K. , Shimada, M. , Takeshima, H. , Hanada, K. , Hirano, T. , Kawakita, T. , Sakaguchi, H. , Ichimura, T. , Ozono, S. , Yuge, K. , Watanabe, Y. , Kotani, Y. , Yamane, M. , Kasugai, Y. , Tanaka, M. , Suganami, T. , Nakada, S. , Mitsutake, N. , Hara, Y. , Kato, K. , Mizuno, S. , Miyake, N. , Kawai, Y. , Tokunaga, K. , Nagasaki, M. , Kito, S. , Isoyama, K. , Onodera, M. , Kaneko, H. , Matsumoto, N. , Matsuda, F. , Matsuo, K. , Takahashi, Y. , Mashimo, T. , Kojima, S. & Ogi, T. (2020) Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome, Sci Adv. 6, Digenic mutations inALDH2andADH5impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome, 6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Dingler, F. A. , Wang, M. , Mu, A. , Millington, C. L. , Oberbeck, N. , Watcham, S. , Pontel, L. B. , Kamimae‐Lanning, A. N. , Langevin, F. , Nadler, C. , Cordell, R. L. , Monks, P. S. , Yu, R. , Wilson, N. K. , Hira, A. , Yoshida, K. , Mori, M. , Okamoto, Y. , Okuno, Y. , Muramatsu, H. , Shiraishi, Y. , Kobayashi, M. , Moriguchi, T. , Osumi, T. , Kato, M. , Miyano, S. , Ito, E. , Kojima, S. , Yabe, H. , Yabe, M. , Matsuo, K. , Ogawa, S. , Gottgens, B. , Hodskinson, M. R. G. , Takata, M. & Patel, K. J. (2020) Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans, Mol Cell. 80, 996–1012 e9, 996, 1012.e9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Che, R. , Zhang, J. , Nepal, M. , Han, B. & Fei, P. (2018) Multifaceted Fanconi Anemia Signaling, Trends Genet. 34, 171–183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Xu, J. , Lahiri, I. , Wang, W. , Wier, A. , Cianfrocco, M. A. , Chong, J. , Hare, A. A. , Dervan, P. B. , DiMaio, F. , Leschziner, A. E. & Wang, D. (2017) Structural basis for the initiation of eukaryotic transcription‐coupled DNA repair, Nature. 551, 653–657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Tornaletti, S. , Reines, D. & Hanawalt, P. C. (1999) Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA, J Biol Chem. 274, 24124–24130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Compe, E. & Egly, J. M. (2012) TFIIH: when transcription met DNA repair, Nat Rev Mol Cell Biol. 13, 343–354. [DOI] [PubMed] [Google Scholar]
  • 23. Zhang, X. , Horibata, K. , Saijo, M. , Ishigami, C. , Ukai, A. , Kanno, S. , Tahara, H. , Neilan, E. G. , Honma, M. , Nohmi, T. , Yasui, A. & Tanaka, K. (2012) Mutations in UVSSA cause UV‐sensitive syndrome and destabilize ERCC6 in transcription‐coupled DNA repair, Nat Genet. 44, 593–597. [DOI] [PubMed] [Google Scholar]
  • 24. Nakazawa, Y. , Sasaki, K. , Mitsutake, N. , Matsuse, M. , Shimada, M. , Nardo, T. , Takahashi, Y. , Ohyama, K. , Ito, K. , Mishima, H. , Nomura, M. , Kinoshita, A. , Ono, S. , Takenaka, K. , Masuyama, R. , Kudo, T. , Slor, H. , Utani, A. , Tateishi, S. , Yamashita, S. , Stefanini, M. , Lehmann, A. R. , Yoshiura, K. & Ogi, T. (2012) Mutations in UVSSA cause UV‐sensitive syndrome and impair RNA polymerase IIo processing in transcription‐coupled nucleotide‐excision repair, Nat Genet. 44, 586–592. [DOI] [PubMed] [Google Scholar]
  • 25. Itoh, T. , Fujiwara, Y. , Ono, T. & Yamaizumi, M. (1995) UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I, Am J Hum Genet. 56, 1267–1276. [PMC free article] [PubMed] [Google Scholar]
  • 26. Okuda, M. , Nakazawa, Y. , Guo, C. , Ogi, T. & Nishimura, Y. (2017) Common TFIIH recruitment mechanism in global genome and transcription‐coupled repair subpathways, Nucleic Acids Res. 45, 13043–13055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Schwertman, P. , Lagarou, A. , Dekkers, D. H. , Raams, A. , van der Hoek, A. C. , Laffeber, C. , Hoeijmakers, J. H. , Demmers, J. A. , Fousteri, M. , Vermeulen, W. & Marteijn, J. A. (2012) UV‐sensitive syndrome protein UVSSA recruits USP7 to regulate transcription‐coupled repair, Nat Genet. 44, 598–602. [DOI] [PubMed] [Google Scholar]
  • 28. Moriwaki, S. , Kanda, F. , Hayashi, M. , Yamashita, D. , Sakai, Y. , Nishigori, C. & Xeroderma pigmentosum clinical practice guidelines revision, c . (2017) Xeroderma pigmentosum clinical practice guidelines, J Dermatol. 44, 1087–1096. [DOI] [PubMed] [Google Scholar]
  • 29. Lehmann, A. R. , McGibbon, D. & Stefanini, M. (2011) Xeroderma pigmentosum, Orphanet J Rare Dis. 6, 70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Oh, K. S. , Khan, S. G. , Jaspers, N. G. , Raams, A. , Ueda, T. , Lehmann, A. , Friedmann, P. S. , Emmert, S. , Gratchev, A. , Lachlan, K. , Lucassan, A. , Baker, C. C. & Kraemer, K. H. (2006) Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): xeroderma pigmentosum without and with Cockayne syndrome, Hum Mutat. 27, 1092–1103. [DOI] [PubMed] [Google Scholar]
  • 31. Lehmann, A. R. (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases, Genes Dev. 15, 15–23. [DOI] [PubMed] [Google Scholar]
  • 32. Scharer, O. D. (2008) XPG: its products and biological roles, Adv Exp Med Biol. 637, 83–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Theil, A. F. , Hoeijmakers, J. H. & Vermeulen, W. (2014) TTDA: big impact of a small protein, Exp Cell Res. 329, 61–68. [DOI] [PubMed] [Google Scholar]
  • 34. Stefanini, M. , Botta, E. , Lanzafame, M. & Orioli, D. (2010) Trichothiodystrophy: from basic mechanisms to clinical implications, DNA Repair (Amst). 9, 2–10. [DOI] [PubMed] [Google Scholar]
  • 35. Ito, S. , Kuraoka, I. , Chymkowitch, P. , Compe, E. , Takedachi, A. , Ishigami, C. , Coin, F. , Egly, J. M. & Tanaka, K. (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP‐G/CS patients, Mol Cell. 26, 231–243. [DOI] [PubMed] [Google Scholar]
  • 36. Kashiyama, K. , Nakazawa, Y. , Pilz, D. T. , Guo, C. , Shimada, M. , Sasaki, K. , Fawcett, H. , Wing, J. F. , Lewin, S. O. , Carr, L. , Li, T. S. , Yoshiura, K. , Utani, A. , Hirano, A. , Yamashita, S. , Greenblatt, D. , Nardo, T. , Stefanini, M. , McGibbon, D. , Sarkany, R. , Fassihi, H. , Takahashi, Y. , Nagayama, Y. , Mitsutake, N. , Lehmann, A. R. & Ogi, T. (2013) Malfunction of nuclease ERCC1‐XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia, Am J Hum Genet. 92, 807–819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Aboussekhra, A. , Biggerstaff, M. , Shivji, M. K. , Vilpo, J. A. , Moncollin, V. , Podust, V. N. , Protic, M. , Hubscher, U. , Egly, J. M. & Wood, R. D. (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components, Cell. 80, 859–868. [DOI] [PubMed] [Google Scholar]
  • 38. Ogi, T. , Limsirichaikul, S. , Overmeer, R. M. , Volker, M. , Takenaka, K. , Cloney, R. , Nakazawa, Y. , Niimi, A. , Miki, Y. , Jaspers, N. G. , Mullenders, L. H. , Yamashita, S. , Fousteri, M. I. & Lehmann, A. R. (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells, Mol Cell. 37, 714–727. [DOI] [PubMed] [Google Scholar]

Articles from Febs Letters are provided here courtesy of Wiley

RESOURCES