Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Sep;124(3):563–571. doi: 10.1042/bj1240563

Calcium binding by human erythrocyte membranes

Janet Forstner 1, J F Manery 1
PMCID: PMC1177226  PMID: 4332543

Abstract

1. The characteristics of Ca2+ binding to haemoglobin-free human erythrocyte membranes were investigated by using 45Ca and centrifugation partition of `ghosts' from their external incubation medium. Equilibrium of `ghosts' with external Ca2+ required less than 15min. 2. The binding did not vary with temperature in the range 0–37°C. 3. At pH7.4 `ghosts' bound a maximum of 283μmol of Ca2+/g of `ghost' protein, equivalent to 6.85×107 Ca2+ ions per cell. 4. Increasing the ionic strength from 0.01 to 0.46 diminished Ca2+ binding, as did ATP in concentrations ranging from 0 to 15mm in the incubation medium. 5. An increase of the pH from 3.0 to 9.3 caused a marked increase in the amount of Ca2+ bound. 6. Extraction of 45Ca-labelled `ghosts' with chloroform–methanol showed that the distribution of Ca2+ was: 79% protein-bound, 16% lipid-bound, 5% in the aqueous phase, presumably non-bound. Most of the lipid-bound Ca2+ (about 80%) was associated with a phospholipid fraction containing phosphatidylserine, phosphoinositides and phosphatidylethanolamine, giving a molar Ca2+: phosphorus ratio of about 1:2.

Full text

PDF
563

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abood L. G. Interrelationships between phosphates and calcium in bioelectric phenomena. Int Rev Neurobiol. 1966;9:223–261. doi: 10.1016/s0074-7742(08)60139-7. [DOI] [PubMed] [Google Scholar]
  2. Abood L. G., Kurahasi K., Perez del Cerro M. Biochemical studies on isolated nerve endings and other particulates of bullfrog brain. Biochim Biophys Acta. 1967 Apr 25;136(3):521–532. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. BLUMENSTEIN J. STUDIES IN PHOSPHOLIPID METABOLISM. I. EFFECT OF GUANIDOACETIC ACID AND CHOLINE ON LIVER PHOSPHOLIPIDS. Can J Biochem. 1964 Aug;42:1183–1194. doi: 10.1139/o64-128. [DOI] [PubMed] [Google Scholar]
  5. Burger S. P., Fujii T., Hanahan D. J. Stability of the bovine erythrocyte membrane. Release of enzymes and lipid components. Biochemistry. 1968 Oct;7(10):3682–3700. doi: 10.1021/bi00850a048. [DOI] [PubMed] [Google Scholar]
  6. CARVALHO A. P., SANUI H., PACE N. CALCIUM AND MAGNESIUM BINDING PROPERTIES OF CELL MEMBRANE MATERIALS. J Cell Physiol. 1963 Dec;62:311–317. doi: 10.1002/jcp.1030620311. [DOI] [PubMed] [Google Scholar]
  7. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  8. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  9. Dryden E. E., Manery J. F. Preparation of tissue and fluid samples for determination of tissue spaces using sorbitol and-or inulin labeled with carbon-14 or tritium. Anal Biochem. 1970 Jun;35(2):384–392. doi: 10.1016/0003-2697(70)90199-5. [DOI] [PubMed] [Google Scholar]
  10. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  11. Eichberg J., Hauser G. Concentrations and disappearance post mortem of polyphosphoinositides in developing rat brain. Biochim Biophys Acta. 1967 Oct 2;144(2):415–422. doi: 10.1016/0005-2760(67)90171-3. [DOI] [PubMed] [Google Scholar]
  12. Engelman D. M. Surface area per lipid molecule in the intact membrane of the human red cell. Nature. 1969 Sep 20;223(5212):1279–1280. doi: 10.1038/2231279a0. [DOI] [PubMed] [Google Scholar]
  13. Epstein F. H., Whittam R. The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity. Biochem J. 1966 Apr;99(1):232–238. doi: 10.1042/bj0990232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FEINSTEIN M. B. REACTION OF LOCAL ANESTHETICS WITH PHOSPHOLIPIDS. A POSSIBLE CHEMICAL BASIS FOR ANESTHESIA. J Gen Physiol. 1964 Nov;48:357–374. doi: 10.1085/jgp.48.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freeman H. C. Crystal structures of metal-peptide complexes. Adv Protein Chem. 1967;22:257–424. doi: 10.1016/s0065-3233(08)60043-1. [DOI] [PubMed] [Google Scholar]
  16. GENT W. L., TROUNCE J. R., WALSER M. THE BINDING OF CALCIUM ION BY THE HUMAN ERYTHROCYTE MEMBRANE. Arch Biochem Biophys. 1964 Jun;105:582–589. doi: 10.1016/0003-9861(64)90054-2. [DOI] [PubMed] [Google Scholar]
  17. Gonzalez-Sastre F., Folch-Pi J. Thin-layer chromatography of the phosphoinositides. J Lipid Res. 1968 Jul;9(4):532–533. [PubMed] [Google Scholar]
  18. HANAHAN D. J., DITTMER J. C., WARASHINA E. A column chromatographic separation of classes of phospholipides. J Biol Chem. 1957 Oct;228(2):685–700. [PubMed] [Google Scholar]
  19. Harrison D. G., Long C. The calcium content of human erythrocytes. J Physiol. 1968 Dec;199(2):367–381. doi: 10.1113/jphysiol.1968.sp008658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hauser H., Chapman D., Dawson R. M. Physical studies of phospholipids. XI. Ca2+ binding to monolayers of phosphatidylserine and phosphatidylinositol. Biochim Biophys Acta. 1969 Jul 15;183(2):320–333. doi: 10.1016/0005-2736(69)90088-1. [DOI] [PubMed] [Google Scholar]
  21. Hauser H., Dawson R. M. The binding of calcium at lipid-water interfaces. Eur J Biochem. 1967 Mar;1(1):61–69. doi: 10.1007/978-3-662-25813-2_11. [DOI] [PubMed] [Google Scholar]
  22. Haydon D. A., Seaman G. V. Electrokinetic studies on the ultrastructure of the human erythrocyte. I. Electrophoresis at high ionic strengths--the cell as a polyanion. Arch Biochem Biophys. 1967 Oct;122(1):126–136. doi: 10.1016/0003-9861(67)90131-2. [DOI] [PubMed] [Google Scholar]
  23. Hendrickson H. S., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry. 1965 Aug;4(8):1599–1605. doi: 10.1021/bi00884a021. [DOI] [PubMed] [Google Scholar]
  24. Joos R. W., Carr C. W. The binding of calcium in mixtures of phospholipids. Proc Soc Exp Biol Med. 1967 Apr;124(4):1268–1272. doi: 10.3181/00379727-124-31984. [DOI] [PubMed] [Google Scholar]
  25. Joos R. W., Carr C. W. The binding of calcium to phospholipid-protein complexes. Proc Soc Exp Biol Med. 1969 Dec;132(3):865–870. doi: 10.3181/00379727-132-34325. [DOI] [PubMed] [Google Scholar]
  26. Kwant W. O., Seeman P. The displacement of membrane calcium by a local anesthetic (chlorpromazine). Biochim Biophys Acta. 1969;193(2):338–349. doi: 10.1016/0005-2736(69)90194-1. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
  29. Manery J. F. Effects of Ca ions on membranes. Fed Proc. 1966 Nov-Dec;25(6):1804–1810. [PubMed] [Google Scholar]
  30. Ohki S., Goldup A. Influence of pH, sodium and calcium ions on the d.c. resistance of black egg lecithin-cholesterol films. Nature. 1968 Feb 3;217(5127):458–459. doi: 10.1038/217458a0. [DOI] [PubMed] [Google Scholar]
  31. Palmer R. F., Posey V. A. Calcium and adenosine triphosphate binding to renal membranes. J Gen Physiol. 1970 Jan;55(1):89–103. doi: 10.1085/jgp.55.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  33. ROELOFSEN B., DE GIER J., VAN DEENENL BINDING OF LIPIDS IN THE RED CELL MEMBRANE. J Cell Physiol. 1964 Apr;63:233–243. doi: 10.1002/jcp.1030630214. [DOI] [PubMed] [Google Scholar]
  34. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  35. Santis M., Rojas E. On the chemistry of ion exchange in monomolecular layers of lipids. Biochim Biophys Acta. 1969;193(2):319–332. doi: 10.1016/0005-2736(69)90192-8. [DOI] [PubMed] [Google Scholar]
  36. Van Breemen C. Permselectivity of a porous phospholipid-cholesterol artificial membrane. Calcium and lanthanum effects. Biochem Biophys Res Commun. 1968 Sep 30;32(6):977–983. doi: 10.1016/0006-291x(68)90124-1. [DOI] [PubMed] [Google Scholar]
  37. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamauchi A., Matsubara A., Kimizuka H., Abood L. G. Differential effect of sodium and potassium on calcium adsorption to stearic acid monolayers. Biochim Biophys Acta. 1968 Mar 1;150(2):181–185. doi: 10.1016/0005-2736(68)90161-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES