Abstract
1. On perfusion of livers from fed rats with a semi-synthetic medium containing no added amino acids there is a rapid release of glutamine during the first 15min (15.6±0.8μmol/h per g wet wt.; mean±s.e.m. of 35 experiments), followed by a low linear rate of production (3.6±0.3μmol/h per g wet wt.; mean±s.e.m. of three experiments). The rapid initial release can be accounted for as wash-out of preexisting intracellular glutamine. 2. Addition of readily permeating substrates, or substrate combinations, giving rise to intracellular glutamate or ammonia, or both, did not appreciably increase the rate of glutamine production over the endogenous rate. The maximum rate obtained was from proline plus alanine; even then the rate represented less than one-fortieth of the capacity of glutamine synthetase measured in vitro. 3. Complete inhibition of respiration in the perfusions [no erythrocytes in the medium; 1mm-cyanide; N2+CO2 (95:5) in the gas phase] or perfusion with glutamine synthetase inhibitors [l-methionine dl-sulphoximine; dl-(+)-allo-δ-hydroxylysine] abolishes the low linear rate of glutamine synthesis, but not the initial rapid release of glutamine. 4. In livers from 48h-starved rats initial release (0–15min) of glutamine was decreased (10.6±1.1μmol/h per g wet wt.; mean±s.e.m. of 11 experiments) and the subsequent rate of glutamine production was lower than in livers from fed rats. Again proline plus alanine was the only substrate combination giving an increase significantly above the endogenous rate. 5. The rate of glutamine synthesis de novo by the liver is apparently unrelated to the tissue content of glutamate or ammonia. 6. The blood glutamine concentration is increased by 50% within 1h of elimination of the liver from the circulation of rats in vivo. 7. There is an output of glutamine by the brain under normal conditions; the mean arterio-venous difference for six rats was 0.023μmol/ml. 8. The high potential activity of liver glutamine synthetase appears to be inhibited by some unknown mechanism: the function of the liver under normal conditions is probably the disposal of glutamine produced by extrahepatic tissues.
Full text
PDF![653](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/5716f9985270/biochemj00646-0204.png)
![654](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/f1691aab8366/biochemj00646-0205.png)
![655](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/cb2d03492cd1/biochemj00646-0206.png)
![656](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/38ca7c556319/biochemj00646-0207.png)
![657](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/8180a1386d81/biochemj00646-0208.png)
![658](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/a064bed98041/biochemj00646-0209.png)
![659](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/dd14eeff5c4d/biochemj00646-0210.png)
![660](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/1177235/665be978b166/biochemj00646-0211.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addae S. K., Lotspeich W. D. Relation between glutamine utilization and production in metabolic acidosis. Am J Physiol. 1968 Aug;215(2):269–277. doi: 10.1152/ajplegacy.1968.215.2.269. [DOI] [PubMed] [Google Scholar]
- DU RUISSEAU J. P., GREENSTEIN J. P., WINITZ M., BIRNBAUM S. M. Studies on the metabolism of amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity. Arch Biochem Biophys. 1957 May;68(1):161–171. doi: 10.1016/0003-9861(57)90337-5. [DOI] [PubMed] [Google Scholar]
- DUDA G. D., HANDLER P. Kinetics of ammonia metabolism in vivo. J Biol Chem. 1958 May;232(1):303–314. [PubMed] [Google Scholar]
- FLOCK E. V., BLOCK M. A., GRINDLAY J. H., MANN F. C., BOLLMAN J. L. Changes in free amino acids of brain and muscle after total hepatectomy. J Biol Chem. 1953 Feb;200(2):529–536. [PubMed] [Google Scholar]
- FLOCK E. V., MANN F. C., BOLLMAN J. L. Free amino acids in plasma and muscle following total removal of the liver. J Biol Chem. 1951 Sep;192(1):293–300. [PubMed] [Google Scholar]
- Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hems R., Stubbs M., Krebs H. A. Restricted permeability of rat liver for glutamate and succinate. Biochem J. 1968 May;107(6):807–815. doi: 10.1042/bj1070807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRSTEN E., GEREZ C., KIRSTEN R. [An enzymatic microdetermination method for ammonia, specifically for extracts of animal tissues and fluids. Determination of NH4 ions in blood]. Biochem Z. 1963;337:312–319. [PubMed] [Google Scholar]
- Katunuma N., Katsunuma T., Tomino I., Matsuda Y. Regulation of glutaminase activity and differentiation of the isozyme during development. Adv Enzyme Regul. 1968;6:227–242. doi: 10.1016/0065-2571(68)90015-0. [DOI] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lueck J. D., Miller L. L. The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver. J Biol Chem. 1970 Oct 25;245(20):5491–5497. [PubMed] [Google Scholar]
- Lund P. A radiochemical assay for glutamine synthetase, and activity of the enzyme in rat tissues. Biochem J. 1970 Jun;118(1):35–39. doi: 10.1042/bj1180035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marliss E. B., Aoki T. T., Pozefsky T., Most A. S., Cahill G. F., Jr Muscle and splanchnic glutmine and glutamate metabolism in postabsorptive andstarved man. J Clin Invest. 1971 Apr;50(4):814–817. doi: 10.1172/JCI106552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMenamy R. H., Vang J., Drapanas T. Amino acid and alpha-keto acid concentrations in plasma and blood of the liverless dog. Am J Physiol. 1965 Nov;209(5):1046–1052. doi: 10.1152/ajplegacy.1965.209.5.1046. [DOI] [PubMed] [Google Scholar]
- Meister A. On the synthesis and utilization of glutamine. Harvey Lect. 1969;63:139–178. [PubMed] [Google Scholar]
- Nishiitsutsuji-Uwo J. M., Ross B. D., Krebs H. A. Metabolic activities of the isolated perfused rat kidney. Biochem J. 1967 Jun;103(3):852–862. doi: 10.1042/bj1030852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAMILJANS V., KRISHNASWAMY P. R., DUMVILLE G., MEISTER A. Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. Biochemistry. 1962 Jan;1:153–158. doi: 10.1021/bi00907a023. [DOI] [PubMed] [Google Scholar]
- Pestaña A., Marco R., Sols A. Allosteric glutaminase in rat liver of likely regulatory significance. FEBS Lett. 1968 Oct;1(5):317–319. doi: 10.1016/0014-5793(68)80143-7. [DOI] [PubMed] [Google Scholar]
- RICHTERICH-VAN BAERLE R., GOLDSTEIN L., DEARBORN E. H. Kidney glutaminases. III. Glutamine synthesis in the guinea pig kidney. Enzymologia. 1957 Jul 31;18(5):327–336. [PubMed] [Google Scholar]
- Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHWERIN P., BESSMAN S. P., WAELSCH H. The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J Biol Chem. 1950 May;184(1):37–44. [PubMed] [Google Scholar]
- Schimassek H., Gerok W. Control of the levels of free amino acids in plasma by the liver. Biochem Z. 1965 Dec 31;343(4):407–415. [PubMed] [Google Scholar]
- Tate S. S., Meister A. Regulation of rat liver glutamine synthetase: activation by alpha-ketoglutarate and inhibition by glycine, alanine, and carbamyl phosphate. Proc Natl Acad Sci U S A. 1971 Apr;68(4):781–785. doi: 10.1073/pnas.68.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
- WU C. GLUTAMINE SYNTHETASE. I. A COMPARATIVE STUDY OF ITS DISTRIBUTION IN ANIMALS AND ITS INHIBITION BY DL-ALLO-DELTA-HYDROXYLYSINE. Comp Biochem Physiol. 1963 Apr;9:335–351. doi: 10.1016/0010-406x(63)90169-5. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]