Abstract
1. Rates of RNA and protein synthesis were measured in rat cerebral-cortex slices, and compared with amino acid incorporation into protein by membrane-bound and free ribosomes from the same tissue, in the first 3 weeks of life. 2. A rapid age-dependent decline in the incorporation of labelled precursors into both RNA and protein was observed, which was more marked for amino acid incorporation into protein. 3. Although membrane-bound ribosomes comprise only a small fraction of total ribosomes, they were more active in incorporating amino acids into protein than were free ribosomes, especially immediately after birth. The decline in activity with age was more marked in the membrane-bound fraction than in free ribosomes. This loss of activity was largely independent of alterations in soluble factors or endogenous mRNA content and appeared to involve some alteration of the function of the ribosome itself, with relatively small alterations in the ratio of membrane-bound to free ribosomes. 4. Thyroidectomy, performed soon after birth, had no effect on the incorporation of radioactive precursors into RNA or protein by either slices or the cell-free preparations during the first 3–4 weeks of life.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews T. M., Tata J. R. Difference in vectorial release of nascent protein from membrane-bound ribosomes of secretory and non-secretory tissues. Biochem Biophys Res Commun. 1968 Sep 30;32(6):1050–1056. doi: 10.1016/0006-291x(68)90136-8. [DOI] [PubMed] [Google Scholar]
- Andrews T. M., Tata J. R. Protein synthesis by membrane-bound and free ribosomes of secretory and non-secretory tissues. Biochem J. 1971 Feb;121(4):683–694. doi: 10.1042/bj1210683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balázs R., Kovács S., Teichgräber P., Cocks W. A., Eayrs J. T. Biochemical effects of thyroid deficiency on the developing brain. J Neurochem. 1968 Nov;15(11):1335–1349. doi: 10.1111/j.1471-4159.1968.tb05913.x. [DOI] [PubMed] [Google Scholar]
- Campbell P. N. Functions of polyribosomes attached to membranes of animal cells. FEBS Lett. 1970 Mar 16;7(1):1–7. doi: 10.1016/0014-5793(70)80603-2. [DOI] [PubMed] [Google Scholar]
- Campbell P. N., Lowe E., Serck-Hanssen G. Protein synthesis by microsomal particles from regenerating rat liver. Biochem J. 1967 Apr;103(1):280–288. doi: 10.1042/bj1030280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dainat J., Rebiere A., Legrand J. Influence de la deficience thyroidienne sur l'incorporation in vivo de la L-(3H)leucine dans les proteines du cervelet chez le jeune rat. J Neurochem. 1970 May;17(5):581–586. doi: 10.1111/j.1471-4159.1970.tb00537.x. [DOI] [PubMed] [Google Scholar]
- FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
- Geel S. E., Timiras P. S. The influence of neonatal hypothyroidism and of thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex. Brain Res. 1967 Mar;4(2):135–142. doi: 10.1016/0006-8993(67)90002-9. [DOI] [PubMed] [Google Scholar]
- Geel S. E., Valcana T., Timiras P. S. Effect of neonatal hypothyroidism and of thyroxine on L-[14-C]leucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat. Brain Res. 1967 Mar;4(2):143–150. doi: 10.1016/0006-8993(67)90003-0. [DOI] [PubMed] [Google Scholar]
- Hunter A. R., Korner A. The response of rat liver polysomes to added homopolynucleotides: the removal of inactive ribosomes. Biochim Biophys Acta. 1969 Mar 18;179(1):115–128. doi: 10.1016/0005-2787(69)90127-0. [DOI] [PubMed] [Google Scholar]
- Johnson T. C., Belytschko G. Alteration in microsomal protein synthesis during early development of mouse brain. Proc Natl Acad Sci U S A. 1969 Mar;62(3):844–851. doi: 10.1073/pnas.62.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson T. C. Cell-free protein synthesis by mouse brain during early development. J Neurochem. 1968 Oct;15(10):1189–1194. doi: 10.1111/j.1471-4159.1968.tb06836.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lerner M. P., Johnson T. C. Regulation of protein synthesis in developing mouse brain tissue. Alteration in ribosomal activity. J Biol Chem. 1970 Mar 25;245(6):1388–1393. [PubMed] [Google Scholar]
- MURTHY M. R., RAPPOPORT D. A. BIOCHEMISTRY OF THE DEVELOPING RAT BRAIN. V. CELL-FREE INCORPORATION OF L-(I-14C)LEUCINE INTO MICROSOMAL PROTEIN. Biochim Biophys Acta. 1965 Jan 11;95:121–131. doi: 10.1016/0005-2787(65)90217-0. [DOI] [PubMed] [Google Scholar]
- Merits I., Cain J. C., Rdzok E. J., Minard F. N. Distribution between free and membrane-bound ribosomes in rat brain. Experientia. 1969;25(7):739–740. doi: 10.1007/BF01897596. [DOI] [PubMed] [Google Scholar]
- Nievel J. G., Robinson N., Eayrs J. T. Protein synthesis in the brain of rats thyroidectomized at birth. Experientia. 1968 Jul 15;24(7):677–678. doi: 10.1007/BF02138307. [DOI] [PubMed] [Google Scholar]
- Orrego F., Lipmann F. Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids. J Biol Chem. 1967 Feb 25;242(4):665–671. [PubMed] [Google Scholar]
- Palade G. E. Structure and function at the cellular level. JAMA. 1966 Nov 21;198(8):815–825. [PubMed] [Google Scholar]
- Tata J. R. Co-ordination between membrane phospholipid synthesis and accelerated biosynthesis of cytoplasmic ribonucleic acid and protein. Biochem J. 1970 Feb;116(4):617–630. doi: 10.1042/bj1160617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tata J. R. Hormonal regulation of growth and protein synthesis. Nature. 1968 Jul 27;219(5152):331–337. doi: 10.1038/219331a0. [DOI] [PubMed] [Google Scholar]
- Tata J. R. The formation, distribution and function of ribosomes and microsomal membranes during induced amphibian metamorphosis. Biochem J. 1967 Nov;105(2):783–801. doi: 10.1042/bj1050783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tata J. R., Williams-Ashman H. G. Effects of growth hormone and tri-iodothyronine on amino acid incorporation by microsomal subfractions from rat liver. Eur J Biochem. 1967 Oct;2(3):366–374. doi: 10.1111/j.1432-1033.1967.tb00147.x. [DOI] [PubMed] [Google Scholar]
- Teng C. S., Hamilton T. H. Regulation of polyribosome formation and protein synthesis in the uterus. Isolation of cytoplasmic ribonucleoprotein particles and the principal properties of the cell-free protein-synthesizing system. Biochem J. 1967 Dec;105(3):1091–1099. doi: 10.1042/bj1051091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wool I. G., Stirewalt W. S., Kurihara K., Low R. B., Bailey P., Oyer D. Mode of action of insulin in the regulation of protein biosynthesis in muscle. Recent Prog Horm Res. 1968;24:139–213. doi: 10.1016/b978-1-4831-9827-9.50010-1. [DOI] [PubMed] [Google Scholar]
- Yamagami S., Fritz R. R., Rappoport D. A. Biochemistry of the developing rat brain. 8. Changes in the ribosomal system and nuclear RNA's. Biochim Biophys Acta. 1966 Dec 21;129(3):532–547. [PubMed] [Google Scholar]