Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Jan;131(1):119–126. doi: 10.1042/bj1310119

The reactivity of functional groups as a probe for investigating the topography of tobacco mosaic virus. The use of mutants with additional lysine residues in the coat protein

Richard N Perham 1
PMCID: PMC1177445  PMID: 4722032

Abstract

Several mutants of tobacco mosaic virus that contain additional lysine residues as a result of mutations in the coat protein were investigated. Mutant E66 has a lysine residue replacing asparagine at position 140 when compared with the wild-type vulgare and this lysine residue reacts readily in the intact virus with methyl picolinimidate. Mutant B13a has two new lysine residues in the coat protein, replacing a glutamine at position 9 and an asparagine at position 33, whereas mutant B13b has the single replacement of glutamine by lysine at position 9. The lysine residue at position 9 in mutants B13a and B13b also reacts readily with methyl picolinimidate in the intact virus but the lysine at position 33 in mutant B13a did not react under these conditions. However, when the isolated coat protein from mutant B13a was treated with methyl picolinimidate, the lysine residue at position 33 did become modified, showing that the loss in reactivity of this residue towards the imidoester in the intact virus is a result of the assembly of the protein subunit into the virus structure. These results are compatible with and extend previous studies on the sero-logical properties of mutants of tobacco mosaic virus and illustrate the value of methyl picolinimidate as a reagent for probing the accessibility of amino groups in proteins. When intact tobacco mosaic virus (vulgare) was treated with p-iodobenzenesulphonyl chloride, no reaction with the lysine residues at positions 33 or 68 in the virus subunit could be detected but complete modification of tyrosine-139 was achieved. This result also extends previous studies with other reagents. The usefulness of the differential reactivity of the lysine residues in tobacco mosaic virus and its mutants as a means of attaching heavy-atom labels at chemically defined positions for subsequent X-ray-diffraction analysis and the implications of these experiments for deciphering the folding of the peptide chain in the virus subunit are discussed.

Full text

PDF
119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACHER R., CROCKER C. Réactions colorées spécifiques de l'arginine et de la tyrosine réalisées après chromatographie sur papier. Biochim Biophys Acta. 1952 Dec;9(6):704–705. doi: 10.1016/0006-3002(52)90236-9. [DOI] [PubMed] [Google Scholar]
  2. ANDERER F. A. RECENT STUDIES ON THE STRUCTURE OF TOBACCO MOSAIC VIRUS. Adv Protein Chem. 1963;18:1–35. doi: 10.1016/s0065-3233(08)60267-3. [DOI] [PubMed] [Google Scholar]
  3. Anderer F. A., Wittmann-Liebold B., Wittmann H. G. Weitere Untersuchungen zur Aminosäuresequenz des Proteins im Tabakmosaikvirus. Z Naturforsch B. 1965 Dec;20(12):1203–1213. [PubMed] [Google Scholar]
  4. Barrett A. N., Leigh J. B., Holmes K. C., Leberman R., Mandelkow E., von Sengbusch P. An electron-density map of tobacco mosaic virus at 10 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:433–448. doi: 10.1101/sqb.1972.036.01.056. [DOI] [PubMed] [Google Scholar]
  5. Benisek W. F., Richards F. M. Attachment of metal-chelating functional groups to hen egg white lysozyme. An approach to introducing heavy atoms into protein crystals. J Biol Chem. 1968 Aug 25;243(16):4267–4271. [PubMed] [Google Scholar]
  6. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  7. Durham A. C., Klug A. Polymerization of tobacco mosaic virus protein and its control. Nat New Biol. 1971 Jan 13;229(2):42–46. doi: 10.1038/newbio229042a0. [DOI] [PubMed] [Google Scholar]
  8. FRAENKEL-CONRAT H. Degradation of tobacco mosaic virus with acetic acid. Virology. 1957 Aug;4(1):1–4. doi: 10.1016/0042-6822(57)90038-7. [DOI] [PubMed] [Google Scholar]
  9. FUNATSU G., TSUGITA A., FRAENKEL-CONRAT H. STUDIES ON THE AMINO ACID SEQUENCE OF TOBACCO MOSAIC VIRUS PROTEIN. V. AMINO ACID SEQUENCES OF TWO PEPTIDES FROM TRYPTIC DIGESTS AND LOCATION OF AMIDE GROUP. Arch Biochem Biophys. 1964 Apr;105:25–41. doi: 10.1016/0003-9861(64)90232-2. [DOI] [PubMed] [Google Scholar]
  10. Fraenkel-Conrat H., Colloms M. Reactivity of tobacco mosaic virus and its protein toward acetic anhydride. Biochemistry. 1967 Sep;6(9):2740–2745. doi: 10.1021/bi00861a014. [DOI] [PubMed] [Google Scholar]
  11. Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
  12. Gibbons I., Perham R. N. The reaction of aldolase with 2-methylmaleic anhydride. Biochem J. 1970 Mar;116(5):843–849. doi: 10.1042/bj1160843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
  14. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King L., Perham R. N. Reaction of tobacco mosaic virus with maleic anhydride and some possible applications to x-ray diffraction analysis. Biochemistry. 1971 Mar 16;10(6):981–987. doi: 10.1021/bi00782a008. [DOI] [PubMed] [Google Scholar]
  16. Klug A. Assembly of tobacco mosaic virus. Fed Proc. 1972 Jan-Feb;31(1):30–42. [PubMed] [Google Scholar]
  17. Lauffer M. A., Stevens C. L. Structure of the tobacco mosaic virus particle; polymerization of tobacco mosaic virus protein. Adv Virus Res. 1968;13:1–63. doi: 10.1016/s0065-3527(08)60250-x. [DOI] [PubMed] [Google Scholar]
  18. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  19. Perham R. N. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochem J. 1967 Dec;105(3):1203–1207. doi: 10.1042/bj1051203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perham R. N., Anderson P. J. The reactivity of thiol groups in aldolase. Biochem Soc Symp. 1970;31:49–58. [PubMed] [Google Scholar]
  21. Perham R. N., Richards F. M. Reactivity and structural role of protein amino groups in tobacco mosaic virus. J Mol Biol. 1968 May 14;33(3):795–807. doi: 10.1016/0022-2836(68)90320-3. [DOI] [PubMed] [Google Scholar]
  22. Perham R. N., Thomas J. O. Reaction of tobacco mosaic virus with a thiol-containing imidoester and a possible application to X-ray diffraction analysis. J Mol Biol. 1971 Dec 14;62(2):415–418. doi: 10.1016/0022-2836(71)90438-4. [DOI] [PubMed] [Google Scholar]
  23. Scheele R. B., Lauffer M. A. Restricted reactivity of the epsilon-amino groups of tobacco mosaic virus protein toward trinitrobenzenesulfonic acid. Biochemistry. 1969 Sep;8(9):3597–3603. doi: 10.1021/bi00837a016. [DOI] [PubMed] [Google Scholar]
  24. Sigler P. B., Blow D. M., Matthews B. W., Henderson R. Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol. 1968 Jul 14;35(1):143–164. doi: 10.1016/s0022-2836(68)80043-9. [DOI] [PubMed] [Google Scholar]
  25. Stark G. R. Recent developments in chemical modification and sequential degradation of proteins. Adv Protein Chem. 1970;24:261–308. doi: 10.1016/s0065-3233(08)60243-0. [DOI] [PubMed] [Google Scholar]
  26. Van Regenmortel M. H. Serological studies on naturally occurring strains and chemically induced mutants of tobacco mosaic virus. Virology. 1967 Mar;31(3):467–480. doi: 10.1016/0042-6822(67)90228-0. [DOI] [PubMed] [Google Scholar]
  27. WITTMANN H. G. PROTEINANALYSEN VON CHEMISCH INDUZIERTEN MUTANTEN DES TABAKMOSAIKVIRUS. Z Vererbungsl. 1964 Dec 30;95:333–344. [PubMed] [Google Scholar]
  28. Wittmann H. G., Wittmann-Liebold B. Protein chemical studies of two RNA viruses and their mutants. Cold Spring Harb Symp Quant Biol. 1966;31:163–172. doi: 10.1101/sqb.1966.031.01.024. [DOI] [PubMed] [Google Scholar]
  29. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]
  30. von Sengbusch P. Aminosäureaustausche und Tertiärstruktur eines Proteins. Vergleich von Mutanten des Tabakmosaikvirus mit serologischen und physikochemischen Methoden. Z Vererbungsl. 1965;96(4):364–386. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES