Abstract
A simple case is considered in which the rate of a two-step reaction depends on pH because the intermediate formed in the first step has to gain (or lose) a proton before it can react in the second step, and in which the rate-determining step therefore changes with pH. The curves of reaction rate against pH are shown to be symmetrical, and the sharpest peak possible has a width at half its height of 1.53pH units, i.e. of 2log(3+2√2). Any particular curve for this situation proves to be identical with a curve that could be generated for the pH-dependence of a single-step reaction in which the rate is proportional to the concentration of a particular ionic form of a reactant. Curves for the latter situation, however, can have forms impossible for the former case in which the rate-determining step changes, but only if the protonations that activate and deactivate the reactant are co-operative. The peak can then become even sharper, and its width at half its height can fall to 1.14pH units, i.e. to 2log(2+√3).
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERTY R. A., MASSEY V. On the interpretation of the pH variation of the maximum initial velocity of an enzyme-catalyzed reaction. Biochim Biophys Acta. 1954 Mar;13(3):347–353. doi: 10.1016/0006-3002(54)90340-6. [DOI] [PubMed] [Google Scholar]
- Briggs G. E., Haldane J. B. A Note on the Kinetics of Enzyme Action. Biochem J. 1925;19(2):338–339. doi: 10.1042/bj0190338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt D. E., Jr, Westheimer F. H. PK of the lysine amino group at the active site of acetoacetate decarboxylase. Biochemistry. 1971 Mar 30;10(7):1249–1253. doi: 10.1021/bi00783a023. [DOI] [PubMed] [Google Scholar]
