Abstract
1. A study of the distribution of glutathione S-alkenetransferases in the livers of vertebrate species suggests that different enzymes may catalyse reactions of GSH with (i) trans-benzylideneacetone, (ii) 2,3-dimethyl-4(2-methylenebutyryl)phenoxyacetic acid, (iii) cinnamonitrile, (iv) o-chlorobenzylidenemalononitrile, (v) methyl vinyl sulphone, and (vi) 3-(β-nitrovinyl)indole. 2. Glutathione S-alkenetransferase activity was generally greatest in rat liver, but the enzyme in hamster liver was more active towards o-chlorobenzylidenemalononitrile, and the enzyme in rabbit, hamster, guinea-pig and mouse livers was more active towards methyl vinyl sulphone. 3. Results from studies of the distribution of activities in rat liver and rat kidney, heat inactivation of rat liver supernatants, and (NH4)2SO4 fractionation and acid-precipitation experiments, differentiated further between some of the enzymes concerned with substrates (i)–(vi). 4. The infrequent detection of mercapturic acids in vivo is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARNES M. M., JAMES S. P., WOOD P. B. The formation of mercapturic acids. 1. Formation of mercapturic acid and the levels of glutathione in tissues. Biochem J. 1959 Apr;71(4):680–690. doi: 10.1042/bj0710680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRAUER R. W. Mechanisms of bile secretion. J Am Med Assoc. 1959 Mar 28;169(13):1462–1466. doi: 10.1001/jama.1959.03000300058011. [DOI] [PubMed] [Google Scholar]
- Baer J. E., Beyer K. H. Renal pharmacology. Annu Rev Pharmacol. 1966;6:261–292. doi: 10.1146/annurev.pa.06.040166.001401. [DOI] [PubMed] [Google Scholar]
- Black D. K. The addition of L-cysteine to unsaturated lactones and related compounds. J Chem Soc Perkin 1. 1966;12:1123–1127. doi: 10.1039/j39660001123. [DOI] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem J. 1967 Jul;104(1):95–102. doi: 10.1042/bj1040095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. Enzymes catalysing conjugations of glutathione with alpha-beta-unsaturated carbonyl compounds. Biochem J. 1968 Oct;109(4):651–661. doi: 10.1042/bj1090651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. Glutathione S-aralkyltransferase. Biochem J. 1969 Dec;115(5):985–991. doi: 10.1042/bj1150985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219. doi: 10.1002/9780470122778.ch5. [DOI] [PubMed] [Google Scholar]
- Cucinell S. A., Swentzel K. C., Biskup R., Snodgrass H., Lovre S., Stark W., Feinsilver L., Vocci F. Biochemical interactions and metabolic fate of riot control agents. Fed Proc. 1971 Jan-Feb;30(1):86–91. [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Jones G. R., Israel M. S. Mechanism of toxicity of injected CS gas. Nature. 1970 Dec 26;228(5278):1315–1317. doi: 10.1038/2281315a0. [DOI] [PubMed] [Google Scholar]
- Rengstorff R. H. The effects of the riot control agent CS on visual acuity. Mil Med. 1969 Mar;134(3):219–221. [PubMed] [Google Scholar]