Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Feb;132(2):349–352. doi: 10.1042/bj1320349

Malate exchange between the cytosol and mitochondria

Robert Rognstad 1, Joseph Katz 1
PMCID: PMC1177593  PMID: 4725043

Abstract

1. By comparing the relative isotopic yields in glucose and CO2 from precursors of mitochondrial and cytosolic malate, it is evident that the rate of isotopic exchange between these compartments is rapid. 2. A variety of potential inhibitors of malate exchange were tested, but no specific and effective inhibitor of the isotopic exchange has been found. 3. Compounds such as n-butylmalonate and p-iodobenzylmalonate, which have been used as inhibitors of the malate–phosphate transport system in isolated mitochondria, do not appear to be sufficiently specific to be useful in studies with intact cells.

Full text

PDF
349

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carnicero H. H., Moore C. L., Hoberman H. D. Oxidation of glycerol 3-phosphate by the perfused rat liver. J Biol Chem. 1972 Jan 25;247(2):418–426. [PubMed] [Google Scholar]
  2. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  3. KREBS H. A., HEMS R., GASCOYNE T. RENAL GLUCONEOGENESIS. IV. GLUCONEOGENESIS FROM SUBSTRATE COMBINATIONS. Acta Biol Med Ger. 1963;11:607–615. [PubMed] [Google Scholar]
  4. KREBS H. A., SPEAKE R. N., HEMS R. ACCELERATION OF RENAL GLUCONEOGENESIS BY KETONE BODIES AND FATTY ACIDS. Biochem J. 1965 Mar;94:712–720. doi: 10.1042/bj0940712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katz J., Rognstad R. The metabolism of tritiated glucose by rat adipose tissue. J Biol Chem. 1966 Aug 10;241(15):3600–3610. [PubMed] [Google Scholar]
  6. Krebs H. A., Gascoyne T., Notton B. M. Generation of extramitochondrial reducing power in gluconeogenesis. Biochem J. 1967 Jan;102(1):275–282. doi: 10.1042/bj1020275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lardy H. A., Paetkau V., Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1410–1415. doi: 10.1073/pnas.53.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Robinson B. H., Williams G. R. The effect of mitochondrial oxidations of inhibitors of the dicarboxylate anion transporting system. FEBS Lett. 1969 Nov 29;5(4):301–304. doi: 10.1016/0014-5793(69)80374-1. [DOI] [PubMed] [Google Scholar]
  9. Rognstad R. Gluconeogenesis in the kidney cortex. Flow of malate between compartments. Biochem J. 1970 Feb;116(3):493–502. doi: 10.1042/bj1160493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rognstad R., Katz J. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate. Biochem J. 1970 Feb;116(3):483–491. doi: 10.1042/bj1160483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rose I. A., Warms J. V. Glycolysis-dependent exchange of diphosphopyridine nucleotide-3H in red blood cells and ascites cells. J Biol Chem. 1969 Mar 10;244(5):1114–1117. [PubMed] [Google Scholar]
  12. Williamson J. R., Anderson J., Browning E. T. Inhibition of gluconeogenesis by butylmalonate in perfused rat liver. J Biol Chem. 1970 Apr 10;245(7):1717–1726. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES