Abstract
1. Imidazol-5-ylpropionate and imidazol-5-yl-lactate are degraded by Pseudomonas testosteroni via inducible pathways. 2. Growth on either compound as the sole source of carbon results in the induction of the enzymes for histidine catabolism. 3. The pathway of histidine degradation in this organism, a non-fluorescent Pseudomonad, is shown to be the same as that operating in Pseudomonas fluorescens and Pseudomonas putida. It consists of the successive formation of urocanate, imidazol-4-on-5-ylpropionate, N-formimino-l-glutamate, N-formyl-l-glutamate and glutamate. 4. Whole cells of P. testosteroni accumulate urocanate in the reaction mixture when incubated with imidazolylpropionate, but only after an adaptive lag period which is removed by previous growth on imidazolylpropionate as the source of carbon. 5. Imidazolyl-lactate is oxidized to imidazolylpyruvate, which then gives rise to histidine by specific transamination with l-glutamate. 6. Cells grown on histidine, urocanate or imidazolylpropionate are also able to degrade imidazolyllactate. 7. Mutants lacking urocanase are unable to grow on imidazolylpropionate, imidazolyl-lactate, histidine or urocanate. One with impaired histidase activity cannot utilize histidine or imidazolyl-lactate, but grows normally on imidazolylpropionate or urocanate. A mutant unable to grow on imidazolylpropionate is indistinguishable from the wild-type with respect to growth on histidine, imidazolyl-lactate or urocanate. 8. Thus it is established that imidazolyl-lactate is metabolized via histidine whereas imidazolylpropionate enters the histidine degradation pathway after conversion into urocanate.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BALDRIDGE R. C., TOURTELLOTTE C. D. The metabolism of histidine. III. Urinary metabolites. J Biol Chem. 1958 Jul;233(1):125–127. [PubMed] [Google Scholar]
- Brevet A., Hoffmeyer J., Roche J., Hedegaard J. Sur la réversibilité de la dégradation de la L-histidine en acide imidazolelactique chex différents microorganismes. C R Seances Soc Biol Fil. 1968;162(5):1054–1058. [PubMed] [Google Scholar]
- Coote J. G., Hassall H. The control of the enzymes degrading histidine and related imidazolyl derivates in Pseudomonas testosteroni. Biochem J. 1973 Mar;132(3):423–433. doi: 10.1042/bj1320423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coote J. G., Hassall H. The role of imidazol-5-yl-lactate-nicotinamide-adenine dinucleotide phosphate oxidoreductase and histidine-2-oxoglutarate aminotransferase in the degradation of imidazol-5-yl-lactate by Pseudomonas acidovorans. Biochem J. 1969 Jan;111(2):237–239. doi: 10.1042/bj1110237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FELDMAN L. I., GUNSALUS I. C. The occurrence of a wide variety of transaminases in bacteria. J Biol Chem. 1950 Dec;187(2):821–830. [PubMed] [Google Scholar]
- Flessel C. P., Ralph P., Rich A. Polyribosomes of growing bacteria. Science. 1967 Nov 3;158(3801):658–660. doi: 10.1126/science.158.3801.658. [DOI] [PubMed] [Google Scholar]
- HALL D. A. Histidine alpha-deaminase and the production of urocanic acid in the mammal. Biochem J. 1952 Jul;51(4):499–504. doi: 10.1042/bj0510499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASSALL H., GREENBERG D. M. Studies on the enzymic decomposition of urocanic acid. V. The formation of 4-oxoglutaramic acid, a nonenzymic oxidation product of 4(5)-imidazolone-5(4)-propionic acid. J Biol Chem. 1963 Apr;238:1423–1431. [PubMed] [Google Scholar]
- HAYAISHI O., TABOR H., HAYAISHI T. N-formimino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazoleacetic acid to formylaspartic acid. J Biol Chem. 1957 Jul;227(1):161–180. [PubMed] [Google Scholar]
- HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
- Hassall H., Rabie F. The bacterial metabolism of imidazolepropionate. Biochim Biophys Acta. 1966 Feb 28;115(2):521–523. doi: 10.1016/0304-4165(66)90460-0. [DOI] [PubMed] [Google Scholar]
- KATZ A. M., DREYER W. J., ANFINSEN C. B. Peptide separation by two-dimensional chromatography and electrophoresis. J Biol Chem. 1959 Nov;234:2897–2900. [PubMed] [Google Scholar]
- KRAML M., BOUTHILLIER L. P. The conversion of urocanic acid to glutamic acid in the intact rat. Can J Biochem Physiol. 1955 Jul;33(4):590–598. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lessie T. G., Neidhardt F. C. Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. J Bacteriol. 1967 Jun;93(6):1800–1810. doi: 10.1128/jb.93.6.1800-1810.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MEHLER A. H., TABOR H. Deamination of histidine to form urocanic acid in liver. J Biol Chem. 1953 Apr;201(2):775–784. [PubMed] [Google Scholar]
- MILNER H. W., LAWRENCE N. S., FRENCH C. S. Colloidal dispersion of chloroplast material. Science. 1950 Jun 9;111(2893):633–634. doi: 10.1126/science.111.2893.633. [DOI] [PubMed] [Google Scholar]
- RAO D. R., GREENBERG D. M. Studies on the enzymic decomposition of urocanic acid. II. Properties of products of urocanase reaction. Biochim Biophys Acta. 1960 Oct 7;43:404–418. doi: 10.1016/0006-3002(60)90465-0. [DOI] [PubMed] [Google Scholar]
- SEN N. P., McGEER P. L., PAUL R. M. Imidazolepropionic acid as a urinary metabolite of L-histidine. Biochem Biophys Res Commun. 1962 Oct 17;9:257–261. doi: 10.1016/0006-291x(62)90069-4. [DOI] [PubMed] [Google Scholar]
- SPOLTER P. D., BALDRIDGE R. C. The metabolism of histidine. V. On the assay of enzymes in rat liver. J Biol Chem. 1963 Jun;238:2071–2074. [PubMed] [Google Scholar]
- Schlesinger S., Magasanik B. Imidazolepropionate, a nonmetabolizable inducer for the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem. 1965 Nov;240(11):4325–4330. [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- TABOR H., MEHLER A. H. Isolation of N-formyl-L-glutamic acid as an intermediate in the enzymatic degradation of L-histidine. J Biol Chem. 1954 Oct;210(2):559–568. [PubMed] [Google Scholar]
- WESTLEY J., CEITHAML J. Synthesis of histidine in E. coli. I. Biochemical mutant studies. Arch Biochem Biophys. 1956 Jan;60(1):215–225. doi: 10.1016/0003-9861(56)90412-x. [DOI] [PubMed] [Google Scholar]
- Wickramasinghe R., Hedegaard J., Roche J. Dégradation de la L-histidine chez Escherichia coli B: formation de l'acide imidazolepyruvique par une histidine-transaminase. C R Seances Soc Biol Fil. 1967;161(10):1891–1896. [PubMed] [Google Scholar]

