Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Mar;132(3):537–540. doi: 10.1042/bj1320537

Inhibition of spermidine formation in rat liver and kidney by methylglyoxal bis(guanylhydrazone)

A E Pegg 1
PMCID: PMC1177618  PMID: 4724588

Abstract

The effect of methylglyoxal bis(guanylhydrazone), a substance known to inhibit putrescine-dependent S-adenosyl-l-methionine decarboxylase, on polyamine metabolism in liver and kidney was investigated. Almost complete inhibition of the incorporation of putrescine into spermidine was obtained up to 8h after administration of 80mg of methylglyoxal bis(guanylhydrazone)/kg body wt. by intraperitoneal injection. However, by 20h after administration of the inhibitor spermidine synthesis was resumed. Considerable accumulation of putrescine occurred during this period (up to 3 times control concentrations in both tissues), but there was only a slight fall in the spermidine content. These results suggest that the putrescine-activated S-adenosyl-l-methionine decarboxylase plays an essential role in spermidine biosynthesis in rat liver and kidney, and the possibility of using methylglyoxal bis(guanylhydrazone) to study the role of polyamine synthesis in growth is discussed.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachrach U. Metabolism and function of spermine and related polyamines. Annu Rev Microbiol. 1970;24:109–134. doi: 10.1146/annurev.mi.24.100170.000545. [DOI] [PubMed] [Google Scholar]
  2. Barros C., Giudice G. Effect of polyamines on ribosomal RNA synthesis during sea urchin development. Exp Cell Res. 1968 Jun;50(3):671–674. doi: 10.1016/0014-4827(68)90434-5. [DOI] [PubMed] [Google Scholar]
  3. Caldarera C. M., Barbiroli B., Moruzzi G. Polyamines and nucleic acids during development of the chick embryo. Biochem J. 1965 Oct;97(1):84–88. doi: 10.1042/bj0970084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dykstra W. G., Jr, Herbst E. J. Spermidine in Regenerating Liver: Relation to Rapid Synthesis of Ribonucleic Acid. Science. 1965 Jul 23;149(3682):428–429. doi: 10.1126/science.149.3682.428. [DOI] [PubMed] [Google Scholar]
  5. JAENNE J., RAINA A., SIIMES M. SPERMIDINE AND SPERMINE IN RAT TISSUES AT DIFFERENT AGES. Acta Physiol Scand. 1964 Dec;62:352–358. doi: 10.1111/j.1748-1716.1964.tb10433.x. [DOI] [PubMed] [Google Scholar]
  6. Jänne J. Studies on the biosynthetic pathway of polyamines in rat liver. Acta Physiol Scand Suppl. 1967;300:1–71. [PubMed] [Google Scholar]
  7. Jänne J., Williams-Ashman H. G. Dissociation of putrescine-activated decarboxylation of S-adenosyl-L-methionine from the enzymic synthesis of spermidine and spermine by purified prostatic enzyme preparations. Biochem Biophys Res Commun. 1971 Jan 22;42(2):222–229. [PubMed] [Google Scholar]
  8. Kostyo J. L. Changes in polyamine content of rat liver following hypophysectomy and treatment with growth hormone. Biochem Biophys Res Commun. 1966 Apr 19;23(2):150–155. doi: 10.1016/0006-291x(66)90520-1. [DOI] [PubMed] [Google Scholar]
  9. Leboy P. S. Stimulation of soluble ribonucleic acid methylase activity by polyamines. Biochemistry. 1970 Mar 31;9(7):1577–1584. doi: 10.1021/bi00809a016. [DOI] [PubMed] [Google Scholar]
  10. MIHICH E. CURRENT STUDIES WITH METHYLGLYOXAL-BIS(GUANYLHYDRAZONE). Cancer Res. 1963 Sep;23:1375–1389. [PubMed] [Google Scholar]
  11. Moulton B. C., Leonard S. L. Hormonal effects on spermidine levels in male and female reproductive organs of the rat. Endocrinology. 1969 Jun;84(6):1461–1465. doi: 10.1210/endo-84-6-1461. [DOI] [PubMed] [Google Scholar]
  12. Pegg A. E., Lockwood D. H., Williams-Ashman H. G. Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth. Biochem J. 1970 Mar;117(1):17–31. doi: 10.1042/bj1170017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pegg A. E. The effects of diamines and polyamines on enzymic methylation of nucleic acid. Biochim Biophys Acta. 1971 Apr 8;232(4):630–642. doi: 10.1016/0005-2787(71)90755-6. [DOI] [PubMed] [Google Scholar]
  14. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  15. Raina A., Jänne J., Siimes M. Stimulation of polyamine synthesis in relation to nucleic acids in regenerating rat liver. Biochim Biophys Acta. 1966 Jul 20;123(1):197–201. doi: 10.1016/0005-2787(66)90173-0. [DOI] [PubMed] [Google Scholar]
  16. Russell D. H., Medina V. J., Snyder S. H. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J Biol Chem. 1970 Dec 25;245(24):6732–6738. [PubMed] [Google Scholar]
  17. Takeda Y., Igarashi K. Polyamines and protein synthesis. IV. Stimulation of aminoacyl transfer RNA formation by polyamines. Biochem Biophys Res Commun. 1969 Dec 4;37(6):917–924. doi: 10.1016/0006-291x(69)90218-6. [DOI] [PubMed] [Google Scholar]
  18. Williams-Ashman H. G., Schenone A. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun. 1972 Jan 14;46(1):288–295. doi: 10.1016/0006-291x(72)90661-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES