Abstract
1. When homogenates of brains from mature adult locusts (Locusta migratoria) were incubated with l-3-(3,4-dihydroxyphenyl)[3-14C]alanine the major radioactive metabolite was dopamine, suggesting the presence of a dopa (3,4-dihydroxyphenylalanine) decarboxylase. 2. Decarboxylation of l-dopa by this tissue, measured under optimum conditions by a radiochemical method, was 21μmol of CO2/h per g wet wt. Apparent decarboxylation of l-tyrosine proceeded at 0.34μmol of CO2/h per g wet wt. There was no detectable decarboxylation of l-tryptophan, l-histidine or l-phenylalanine. 3. Dopa decarboxylase activity was found in all major regions of the ventral nerve cord of the mature locust (range: 4–7μmol of CO2/h per g wet wt.) but was low or absent in thoracic peripheral nerve. 4. Marked decarboxylation of l-dopa was found in homogenates of brains of four other species of insects, and in brain and ventral nerve cord, but not in the claw nerve, of the crayfish. 5. The activity of the locust brain enzyme may be slightly lower at the time of imaginal ecdysis than during the mature period. By contrast, the dopa decarboxylase that produces dopamine as an intermediate in cuticle biosynthesis is known to be high in activity at the time of ecdysis and low in activity during the intermoult stages.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AWAPARA J., SANDMAN R. P., HANLY C. Activation of DOPA decarboxylase by pyridoxal phosphate. Arch Biochem Biophys. 1962 Sep;98:520–525. doi: 10.1016/0003-9861(62)90220-5. [DOI] [PubMed] [Google Scholar]
- BUZARD J. A., NYTCH P. D. The effect of norepinephrine on the 5-hydroxytryptophan decarboxylase activity of rat kidney. J Biol Chem. 1959 Apr;234(4):884–888. [PubMed] [Google Scholar]
- Black I. B., Axelrod J. Inhibition of tyrosine transaminase activity by norepinephrine. J Biol Chem. 1969 Nov 25;244(22):6124–6129. [PubMed] [Google Scholar]
- CLARK C. T., WEISSBACH H., UDENFRIEND S. 5-Hydroxytryptophan decarboxylase: preparation and properties. J Biol Chem. 1954 Sep;210(1):139–148. [PubMed] [Google Scholar]
- COLHOUN E. H. Synthesis of 5-hydroxytryptamine in the American cockroach. Experientia. 1963 Jan 15;19:9–10. doi: 10.1007/BF02135325. [DOI] [PubMed] [Google Scholar]
- Cech S., Knoz J. Monoamine-containing structures in the nerve cord of some representatives of Diptera (Insecta). Experientia. 1970 Oct 15;26(10):1125–1126. doi: 10.1007/BF02112714. [DOI] [PubMed] [Google Scholar]
- Christenson J. G., Dairman W., Udenfriend S. On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin-dopamine-norepinephrine). Proc Natl Acad Sci U S A. 1972 Feb;69(2):343–347. doi: 10.1073/pnas.69.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elofsson R., Kauri T., Nielsen S. O., Strömberg J. O. Localization of monoaminergic neurons in the central nervous system of Astacus astacus Linné (Crustacea). Z Zellforsch Mikrosk Anat. 1966;74(4):464–473. doi: 10.1007/BF00496839. [DOI] [PubMed] [Google Scholar]
- Elofsson R., Klemm N. Monoamine-containing neurons in the optic ganglia of crustaceans and insects. Z Zellforsch Mikrosk Anat. 1972;133(4):475–499. doi: 10.1007/BF00307130. [DOI] [PubMed] [Google Scholar]
- FLOREY E. A new test preparation for bio-assay of factor I and gamma-aminobutyric acid. J Physiol. 1961 Apr;156:1–7. doi: 10.1113/jphysiol.1961.sp006653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frontali N., Häggendal J. Noradrenaline and dopamine content in the brain of the cockroach Periplaneta americana. Brain Res. 1969 Jul;14(2):540–542. doi: 10.1016/0006-8993(69)90134-6. [DOI] [PubMed] [Google Scholar]
- Klemm N., Björklund A. Identification of dopamine and noradrenaline in nervous structures of the insect brain. Brain Res. 1971 Mar 5;26(2):459–464. [PubMed] [Google Scholar]
- Klemm N. Monoaminhaltige Strukturen im Zentralnervensystem der Trichoptera (Insecta). I. Z Zellforsch Mikrosk Anat. 1968;92(4):487–502. [PubMed] [Google Scholar]
- Klemm N. Monoaminhaltige Strukturen im Zentralnervensystem der Trichoptera (Insecta). II. Z Zellforsch Mikrosk Anat. 1971;117(4):537–558. [PubMed] [Google Scholar]
- LOVENBERG W., WEISSBACH H., UDENFRIEND S. Aromatic L-amino acid decarboxylase. J Biol Chem. 1962 Jan;237:89–93. [PubMed] [Google Scholar]
- Marmaras V. J., Sekeris C. E., Karlson P. Activity of 5-hydroxytryptophan decarboxylase during development of the blow-fly Calliphora erythrocephala, in relation to the ecdysone titer. Acta Biochim Pol. 1966;13(4):305–309. [PubMed] [Google Scholar]
- Miller T. Response of cockroach cardiac neurons to cholinergic compounds. J Insect Physiol. 1968 Dec;14(12):1713–1717. doi: 10.1016/0022-1910(68)90203-5. [DOI] [PubMed] [Google Scholar]
- Murdock L. L. Catecholamines in arthropods: a review. Comp Gen Pharmacol. 1971 Sep;2(7):254–274. doi: 10.1016/0010-4035(71)90050-4. [DOI] [PubMed] [Google Scholar]
- Murdock L. L. Crayfish vas deferens: contractions in response to L-glutamate and gamma-aminobutyrate. Comp Gen Pharmacol. 1971 Mar;2(5):93–98. doi: 10.1016/0010-4035(71)90073-5. [DOI] [PubMed] [Google Scholar]
- NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
- SCHNEIDER F. H., GILLIS C. N. CATECHOLAMINE BIOSYNTHESIS IN VIVO: AN APPLICATION OF THIN-LAYER CHROMATOGRAPHY. Biochem Pharmacol. 1965 Apr;14:623–626. doi: 10.1016/0006-2952(65)90235-2. [DOI] [PubMed] [Google Scholar]
- SEKERIS C. E. ZUM TYROSINSTOFFWECHSEL DER INSEKTEN. XII. REINIGUNG, EIGENSCHAFTEN UND SUBSTRATSPEZIFITAET DER DOPA-DECARBOXYLASE. Hoppe Seylers Z Physiol Chem. 1963;332:70–78. doi: 10.1515/bchm2.1963.332.1.70. [DOI] [PubMed] [Google Scholar]
- SHAAYA E., SEKERIS C. E. ECDYSONE DURING INSECT DEVELOPMENT. 3. ACTIVITIES OF SOME ENZYMES OF TYROSINE METABOLISM IN COMPARISON WITH ECDYSONE TITER DURING THE DEVELOPMENT OF THE BLOWFLY, CALLIPHORA ERYTHROCEPHIA MEIG. Gen Comp Endocrinol. 1965 Feb;5:35–39. doi: 10.1016/0016-6480(65)90066-3. [DOI] [PubMed] [Google Scholar]
- Smalley K. N. Adrenergic transmission in the light organ or the firefly, Photinus pyralis. Comp Biochem Physiol. 1965 Dec;16(4):467–477. doi: 10.1016/0010-406x(65)90310-5. [DOI] [PubMed] [Google Scholar]
- Steiner F. A., Pieri L. Comparative microelectrophoretic studies of invertebrate and vertebrate neurones. Prog Brain Res. 1969;31:191–199. doi: 10.1016/S0079-6123(08)63238-0. [DOI] [PubMed] [Google Scholar]
- Tait G. H. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria. Biochem J. 1970 Aug;118(5):819–830. doi: 10.1042/bj1180819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WERLE E., AURES D. [On the purification and specificity of DOPA-decarboxylase]. Hoppe Seylers Z Physiol Chem. 1959 Sep 30;316:45–60. doi: 10.1515/bchm2.1959.316.1.45. [DOI] [PubMed] [Google Scholar]
- Weinreich D., Dewhurst S. A., McCaman R. E. Metabolism of putative transmitters in individual neurons of Aplysia californica: aromatic amino acid decarboxylase. J Neurochem. 1972 Apr;19(4):1125–1130. doi: 10.1111/j.1471-4159.1972.tb01432.x. [DOI] [PubMed] [Google Scholar]