Abstract
At a glucose concentration of 3mm or less, iodoacetamide had no effect on the release of insulin from microdissected pancreatic islets of ob/ob-mice. At higher glucose concentrations, iodoacetamide exerted both an initial stimulatory and a subsequent inhibitory action. When islets were perifused with 1mm-iodoacetamide and 17mm-glucose the inhibitory action predominated after about 15min of transient stimulation. With decreasing concentrations of iodoacetamide the stimulatory phase was gradually prolonged, and with 0.003–0.1mm-iodoacetamide stimulation only was observed for 75min. Prolonged stimulation was also noted after a short pulse of iodoacetamide. Similar responses to 0.1mm-iodoacetamide were observed with islets from normal mice. With islets from ob/ob-mice the effect of 0.1mm-iodoacetamide was reproduced with 0.1mm-iodoacetate, whereas 0.1mm-acetamide had no apparent effect. Iodoacetamide increased the Vmax. of glucose-stimulated insulin release without altering the apparent Km for glucose. Leucine, glibenclamide or theophylline could not replace glucose in this synergistic action with iodoacetamide. Iodoacetamide rather inhibited the insulin-releasing action of theophylline. Iodoacetamide-induced potentiation of the glucose-stimulated insulin release was rapidly and reversibly inhibited by mannoheptulose, adrenaline, or calcium deficiency. The potentiating effect on insulin release was not paralleled by effects on glucose oxidation or on islet fructose 1,6-diphosphate. However, the inhibitory action of iodoacetamide might be explained by inhibition of glycolysis as evidenced by an inhibition of glucose oxidation and a rise of fructose 1,6-diphosphate. The results support our previous hypothesis that thiol reagents can stimulate insulin release by acting on relatively superficial thiol groups in the β-cell plasma membrane. Glycolysis seems to be necessary in order for iodoacetamide to stimulate in this way.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aleyassine H. Energy requirements for insulin release from rat pancreas in vitro. Endocrinology. 1970 Jul;87(1):84–89. doi: 10.1210/endo-87-1-84. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Bassett J. M., Randle P. J. Insulin secretion mechanisms and glucose metabolism in isolated islets. Diabetes. 1972;21(2 Suppl):538–545. [PubMed] [Google Scholar]
- Ashcroft S. J.H., Randle P. J., Täljedal I. -B. Cyclic nucleotide phosphodiesterase activity in normal mouse pancreatic islets. FEBS Lett. 1972 Feb 15;20(3):263–266. doi: 10.1016/0014-5793(72)80082-6. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BHATTACHARYA G. On the protection against alloxan diabetes by hexoses. Science. 1954 Nov 19;120(3125):841–843. doi: 10.1126/science.120.3125.841. [DOI] [PubMed] [Google Scholar]
- Bloom G. D., Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Effects of organic mercurials on mammalian pancreatic -cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem J. 1972 Sep;129(2):241–254. doi: 10.1042/bj1290241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brisson G. R., Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3',5'-cyclic monophosphate. J Clin Invest. 1972 Feb;51(2):232–241. doi: 10.1172/JCI106808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coore H. G., Randle P. J. Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem J. 1964 Oct;93(1):66–78. doi: 10.1042/bj0930066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALKMER S. Experimental diabetes research in fish. Acta Endocrinol Suppl (Copenh) 1961;37(Suppl 59):1–122. [PubMed] [Google Scholar]
- GRODSKY G. M., BATTS A. A., BENNETT L. L., VCELLA C., MCWILLIAMS N. B., SMITH D. F. EFFECTS OF CARBOHYDRATES ON SECRETION OF INSULIN FROM ISOLATED RAT PANCREAS. Am J Physiol. 1963 Oct;205:638–644. doi: 10.1152/ajplegacy.1963.205.4.638. [DOI] [PubMed] [Google Scholar]
- Georg R. H., Sussman K. E., Leitner J. W., Kirsch W. M. Inhibition of glucose and tolbutamide-induced insulin release by iodoacetate and antimycin A. Endocrinology. 1971 Jul;89(1):169–176. doi: 10.1210/endo-89-1-169. [DOI] [PubMed] [Google Scholar]
- Goldman J. M., Hadley M. E. Sulfhydryl requirement for alpha adrenergic receptor activity and melanophore stimulating hormone (MSH) action on melanophores. J Pharmacol Exp Ther. 1972 Jul;182(1):93–100. [PubMed] [Google Scholar]
- Grodsky G. M., Bennett L. L. Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes. 1966 Dec;15(12):910–913. doi: 10.2337/diab.15.12.910. [DOI] [PubMed] [Google Scholar]
- HULTQUIST G. T. Hypoglycaemic effect of monoiodoacetic acid and iodoacetamide in rats. Nature. 1958 Aug 2;182(4631):318–319. doi: 10.1038/182318a0. [DOI] [PubMed] [Google Scholar]
- Havu N. Sulfhydryl inhibitors and pancreatic islet tissue. Acta Endocrinol Suppl (Copenh) 1969;139:1–231. [PubMed] [Google Scholar]
- Heding L. G. Determination of free and antibody-bound insulin in insulin treated diabetic patients. Horm Metab Res. 1969 May;1(3):145–146. doi: 10.1055/s-0028-1096835. [DOI] [PubMed] [Google Scholar]
- Hellman B., Idahl L. A., Lernmark A., Sehlin J., Simon E., Täljedal I. B. The pancreatic -cell recognition of insulin secretagogues. I. Transport of mannoheptulose and the dynamics of insulin release. Mol Pharmacol. 1972 Jan;8(1):1–7. [PubMed] [Google Scholar]
- Hellman B., Lernmark A., Sehlin J., Täljedal I. B. Effects of phlorizin on metabolism and function of pancreatic -cell. Metabolism. 1972 Jan;21(1):60–66. doi: 10.1016/0026-0495(72)90020-0. [DOI] [PubMed] [Google Scholar]
- Hellman B., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic -cell recognition of insulin secretagogues. V. Binding and stimulatory action of phlorizin. Mol Pharmacol. 1972 Nov;8(6):759–769. [PubMed] [Google Scholar]
- Hellman B. Methodological approaches to studies on the pancreatic islets. Diabetologia. 1970 Apr;6(2):110–120. doi: 10.1007/BF00421438. [DOI] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Effects of glucose and other modifiers of insulin release on the oxidative metabolism of amino acids in micro-dissected pancreatic islets. Biochem J. 1971 Jul;123(4):513–521. doi: 10.1042/bj1230513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Evidence for mediated transport of glucose in mammalian pancreatic -cells. Biochim Biophys Acta. 1971 Jul 6;241(1):147–154. doi: 10.1016/0005-2736(71)90312-9. [DOI] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Transport of -aminoisobutyric acid in mammalian pancretic -cells. Diabetologia. 1971 Aug;7(4):256–265. doi: 10.1007/BF01211878. [DOI] [PubMed] [Google Scholar]
- Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
- Idahl L. A. A micro perifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Anal Biochem. 1972 Dec;50(2):386–398. doi: 10.1016/0003-2697(72)90047-4. [DOI] [PubMed] [Google Scholar]
- KEEN H., FIELD J. B., PASTAN I. H. A simple method for in vitro metabolic studies using small volumes of tissue and medium. Metabolism. 1963 Feb;12:143–147. [PubMed] [Google Scholar]
- Kanazawa Y., Orci L., Lambert A. E. Organ culture of fetal rat pancreas. IV. Effects of metabolic inhibitors on insulin release. Endocrinology. 1971 Aug;89(2):576–583. doi: 10.1210/endo-89-2-576. [DOI] [PubMed] [Google Scholar]
- Lernmark A., Hellman B. Effect of epinephrine and mannoheptulose on early and late phases of glucose-stimulated insulin release. Metabolism. 1970 Aug;19(8):614–618. doi: 10.1016/0026-0495(70)90018-1. [DOI] [PubMed] [Google Scholar]
- Lernmark A. [Isolated mouse islets as a model for studying insulin release]. Acta Diabetol Lat. 1971 Jul-Aug;8(4):649–679. doi: 10.1007/BF01550894. [DOI] [PubMed] [Google Scholar]
- Loubatières A., Mariani M. M., Sorel G., Savi L. The action of beta-adrenergic blocking and stimulating agents on insulin secretion. Characterization of the type of beta receptor. Diabetologia. 1971 Jun;7(3):127–132. doi: 10.1007/BF01212541. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F., Mayhew D. A possible role for the adenylcyclase system in insulin secretion. J Clin Invest. 1967 Nov;46(11):1724–1734. doi: 10.1172/JCI105663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matschinsky F. M., Landgraf R., Ellerman J., Kotler-Brajtburg J. Glucoreceptor mechanisms in islets of Langerhans. Diabetes. 1972;21(2 Suppl):555–569. doi: 10.2337/diab.21.2.s555. [DOI] [PubMed] [Google Scholar]
- Matschinsky F. M., Passonneau J. V., Lowry O. H. Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique. J Histochem Cytochem. 1968 Jan;16(1):29–39. doi: 10.1177/16.1.29. [DOI] [PubMed] [Google Scholar]
- Montague W., Cook J. R. The role of adenosine 3':5'-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem J. 1971 Mar;122(1):115–120. doi: 10.1042/bj1220115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheynius A., Täljedal I. B. On the mechanism of glucose protection against alloxan toxicity. Diabetologia. 1971 Aug;7(4):252–255. doi: 10.1007/BF01211877. [DOI] [PubMed] [Google Scholar]
- Watkins D., Cooperstein S. J., Lazarow A. Effect of sulfhydryl reagents on permeability of toadfish islet tissue. Am J Physiol. 1970 Aug;219(2):503–509. doi: 10.1152/ajplegacy.1970.219.2.503. [DOI] [PubMed] [Google Scholar]
- Watkins D., Cooperstein S. J., Lazarow A. Effect of sulfhydryl-binding reagents on islet tissue permeability: protection and reversal by thiol compounds. J Pharmacol Exp Ther. 1971 Jan;176(1):42–51. [PubMed] [Google Scholar]
