Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Apr;132(4):797–801. doi: 10.1042/bj1320797

Microbial metabolism of C1 and C2 compounds. The role of acetate during growth of Pseudomonas AM1 on C1 compounds, ethanol and β-hydroxybutyrate

Patricia M Dunstan 1,*, C Anthony 1
PMCID: PMC1177654  PMID: 4721612

Abstract

Pseudomonas AM1 grows on β-hydroxybutyrate and methanol at similar rates. β-Hydroxybutyrate is not metabolized by way of the glyoxylate bypass, but is assimilated by the novel route (with acetate as an intermediate) that operates during growth of this organism on ethanol. Evidence from short-term labelling experiments indicates that acetate, which is a possible intermediate in the assimilation of C1 compounds, is rapidly metabolized to glycine during growth of Pseudomonas AM1 on methanol.

Full text

PDF
797

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase. Biochem J. 1971 Aug;124(1):75–81. doi: 10.1042/bj1240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dunstan P. M., Anthony C., Drabble W. T. Microbial metabolism of C 1 and C 2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochem J. 1972 Jun;128(1):99–106. doi: 10.1042/bj1280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunstan P. M., Anthony C., Drabble W. T. Microbial metabolism of C 1 and C 2 compounds. The role of glyoxylate, glycollate and acetate in the growth of Pseudomonas AM1 on ethanol and on C 1 compounds. Biochem J. 1972 Jun;128(1):107–115. doi: 10.1042/bj1280107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harder W., Quayle J. R. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C compounds. Biochem J. 1971 Mar;121(5):763–769. doi: 10.1042/bj1210763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Large P. J., Peel D., Quayle J. R. Microbial growth on C(1) compounds. 3. Distribution of radioactivity in metabolites of methanol-grown Pseudomonas AM1 after incubation with [C]methanol and [C]bicarbonate. Biochem J. 1962 Mar;82(3):483–488. doi: 10.1042/bj0820483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Large P. J., Quayle J. R. Microbial growth on C(1) compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J. 1963 May;87(2):386–396. doi: 10.1042/bj0870386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SHUSTER C. W., DOUDOROFF M. A cold-sensitive D(-) beta-hydroxybutyric acid dehydrogenase from Rhodospirillum rubrum. J Biol Chem. 1962 Feb;237:603–607. [PubMed] [Google Scholar]
  9. Salem A. R., Large P. J., Quayle J. R. Glycine formation during growth of Pseudomonas AM1 on methanol and succinate. Biochem J. 1972 Aug;128(5):1203–1211. doi: 10.1042/bj1281203. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES