Abstract
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD chloride) and 7-(2′-hydroxyethylthio)-NBD (obtained from NBD chloride and mercaptoethanol) undergo a reversible spectral change in alkaline solution that depends respectively on a single apparent pKa 9.76 (at 25°C) and 8.81 (at 32°C). In acid solution however no spectral change was observed. NBD chloride reacts slowly with papain at pH7, but the rate of inhibition increases at lower pH and depends on an apparent pKa of 3.7 (at 35°C), which has been tentatively assigned to the carboxyl group of aspartic acid-158. The spectral properties of NBD-papain indicate that the thiol group of cysteine-25 is the site of reaction. The intensity of the fluorescence-emission spectrum of NBD-papain depends on a single pKa of 4.2 (at 26.7°C). The intensity of the fluorescence-emission spectrum of the mixed disulphide formed from papain and 7-(2′-mercaptoethylamino)-NBD (obtained from NBD chloride and cysteamine) depended on a single pKa of 3.94 in water and 3.89 in aq. 19.2% (v/v) dioxan (at 27°C). This small change to lower pKa value in a medium of lower dielectric constant is characteristic of a cationic acid. The only acid of this type in the active-site region is the conjugate acid of histidine-159.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkett D. J., Price N. C., Radda G. K., Salmon A. G. The reactivity of SH groups with a fluorogenic reagent. FEBS Lett. 1970 Feb 25;6(4):346–348. doi: 10.1016/0014-5793(70)80095-3. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K., Little G. A novel reactivity of papain and a convenient active site titration in the presence of other thiols. FEBS Lett. 1970 Jul 29;9(2):113–116. doi: 10.1016/0014-5793(70)80327-1. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K., Little G. Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system. Biochem J. 1972 Jun;128(2):471–474. doi: 10.1042/bj1280471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brubacher L. J., Bender M. L. The preparation and properties of trans-cinnamoyl-papain. J Am Chem Soc. 1966 Dec 20;88(24):5871–5880. doi: 10.1021/ja00976a032. [DOI] [PubMed] [Google Scholar]
- Chaiken I. M., Smith E. L. Reaction of chloroacetamide with the sulfhydryl group of papain. J Biol Chem. 1969 Oct 10;244(19):5087–5094. [PubMed] [Google Scholar]
- Chaiken I. M., Smith E. L. Reaction of the sulfhydryl group of papain with chloroacetic acid. J Biol Chem. 1969 Oct 10;244(19):5095–5099. [PubMed] [Google Scholar]
- Drenth J., Jansonius J. N., Koekoek R., Sluyterman L. A., Wolthers B. G. IV. Cysteine proteinases. The structure of the papain molecule. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):231–236. doi: 10.1098/rstb.1970.0022. [DOI] [PubMed] [Google Scholar]
- Drenth J., Jansonius J. N., Koekoek R., Swen H. M., Wolthers B. G. Structure of papain. Nature. 1968 Jun 8;218(5145):929–932. doi: 10.1038/218929a0. [DOI] [PubMed] [Google Scholar]
- Ghosh P. B., Whitehouse M. W. 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: a new fluorigenic reagent for amino acids and other amines. Biochem J. 1968 Jun;108(1):155–156. doi: 10.1042/bj1080155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain S. S., Lowe G. Evidence for histidine in the active site of papain. Biochem J. 1968 Aug;108(5):855–859. doi: 10.1042/bj1080855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain S. S., Lowe G. The location of the active-site histidine residue in the primary sequence of papain. Biochem J. 1968 Aug;108(5):861–866. doi: 10.1042/bj1080861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMMEL J. R., SMITH E. L. Crystalline papain. I. Preparation, specificity, and activation. J Biol Chem. 1954 Apr;207(2):515–531. [PubMed] [Google Scholar]
- KIMMEL J. R., SMITH E. L. The properties of papain. Adv Enzymol Relat Subj Biochem. 1957;19:267–334. doi: 10.1002/9780470122648.ch4. [DOI] [PubMed] [Google Scholar]
- LOWE G., WILLIAMS A. A STUDY OF SOME THIOL ESTER HYDROLYSES AS MODELS FOR THE DEACYLATION STEP OF PAPAIN-CATALYSED HYDROLYSES. Biochem J. 1965 Jul;96:194–198. doi: 10.1042/bj0960194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWE G., WILLIAMS A. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS. Biochem J. 1965 Jul;96:199–204. doi: 10.1042/bj0960199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe G. The structure and mechanism of action of papain. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):237–248. doi: 10.1098/rstb.1970.0023. [DOI] [PubMed] [Google Scholar]
- Lowe G., Yuthavong Y. pH-dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides. Biochem J. 1971 Aug;124(1):117–122. doi: 10.1042/bj1240117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchel R. E., Chaiken I. M., Smith E. L. The complete amino acid sequence of papain. Additions and corrections. J Biol Chem. 1970 Jul 25;245(14):3485–3492. [PubMed] [Google Scholar]
- STOCKELL A., SMITH E. L. Kinetics of papain action. I. Hydrolysis of benzoly-L-argininamide. J Biol Chem. 1957 Jul;227(1):1–26. [PubMed] [Google Scholar]
- Sluyterman L. A., Wijdenes J. An agarose mercurial column for the separation of mercaptopapain and nonmercaptopapain. Biochim Biophys Acta. 1970 Mar 31;200(3):593–595. doi: 10.1016/0005-2795(70)90122-4. [DOI] [PubMed] [Google Scholar]
- Sluyterman L. A., de Graaf M. J. The fluorescence of papain. Biochim Biophys Acta. 1970 Mar 31;200(3):595–597. doi: 10.1016/0005-2795(70)90123-6. [DOI] [PubMed] [Google Scholar]
- Steiner R. F. Varying luminescence behavior of the different tryptophan residues of papain. Biochemistry. 1971 Mar 2;10(5):771–778. doi: 10.1021/bi00781a008. [DOI] [PubMed] [Google Scholar]
- Wallenfels K., Eisele B. Stereospecific alkylation with asymmetric reagents. Eur J Biochem. 1968 Jan;3(3):267–275. doi: 10.1111/j.1432-1033.1968.tb19526.x. [DOI] [PubMed] [Google Scholar]
