Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 May;134(1):27–32. doi: 10.1042/bj1340027

The uptake of γ-aminobutyrate by organotypic cultures of chick spinal cord

G Tunnicliff 1, Y D Cho 1, Natalie Blackwell 1, R O Martin 1, J D Wood 1
PMCID: PMC1177784  PMID: 4737378

Abstract

1. Explants of spinal cord from 10-day chick embryos maintained for up to 16 days in culture rapidly accumulated γ-amino[3H]butyrate when incubated at 25°C or 36°C in a medium containing 50nm-γ-aminobutyrate. The mechanism of the uptake process has many of the properties of an active-transport system: it is Na+-dependent, temperature-sensitive, inhibited by ouabain, and displays saturation kinetics. The apparent Km for γ-aminobutyrate is 1.7×10−5m, and Vmax. is 33pmol/min per g. 2. The rate of accumulation of γ-amino[3H]butyrate in cultures between the ages of 3 and 16 days was remarkably constant and was not related to the morphological maturity of the spinal-cord explants. 3. The present demonstration in spinal-cord explants of an active transport system for γ-aminobutyrate, already established for non-cultured nervous tissue, means that nervous-tissue culture can provide a convenient model for studying uptake processes in the central nervous system.

Full text

PDF
27

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowery N. G., Brown D. A. -Aminobutyric acid uptake by sympathetic ganglia. Nat New Biol. 1972 Jul 19;238(81):89–91. doi: 10.1038/newbio238089a0. [DOI] [PubMed] [Google Scholar]
  2. Bunge M. B., Bunge R. P., Peterson E. R. The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 1967 Dec;6(4):728–749. doi: 10.1016/0006-8993(67)90129-1. [DOI] [PubMed] [Google Scholar]
  3. Chase T. N., Katz R. I., Kopin I. J. Release of [3H]serotonin from brain slices. J Neurochem. 1969 Apr;16(4):607–615. doi: 10.1111/j.1471-4159.1969.tb06860.x. [DOI] [PubMed] [Google Scholar]
  4. Crain S. M. Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol. 1966;9:1–43. doi: 10.1016/s0074-7742(08)60135-x. [DOI] [PubMed] [Google Scholar]
  5. Davidoff R. A., Shank R. P., Graham L. T., Jr, Aprison M. H., Werman R. Association of glycine with spinal interneurones. Nature. 1967 May 13;214(5089):680–681. doi: 10.1038/214680a0. [DOI] [PubMed] [Google Scholar]
  6. ELLIOTT K. A., VAN GELDER N. M. Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem. 1958 Oct;3(1):28–40. doi: 10.1111/j.1471-4159.1958.tb12606.x. [DOI] [PubMed] [Google Scholar]
  7. HILD W., TASAKI I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962 Mar;25:277–304. doi: 10.1152/jn.1962.25.2.277. [DOI] [PubMed] [Google Scholar]
  8. Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
  9. Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
  10. Kim S. U. Observations on cerebellar granule cells in tissue culture. A silver and electron microscopic study. Z Zellforsch Mikrosk Anat. 1970;107(4):454–465. doi: 10.1007/BF00335434. [DOI] [PubMed] [Google Scholar]
  11. Krnjević K. Glutamate and gamma-aminobutyric acid in brain. Nature. 1970 Oct 10;228(5267):119–124. doi: 10.1038/228119a0. [DOI] [PubMed] [Google Scholar]
  12. Lasher R. S., Zagon I. S. The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res. 1972 Jun 22;41(2):482–488. doi: 10.1016/0006-8993(72)90521-5. [DOI] [PubMed] [Google Scholar]
  13. Lehrer G. M., Bornstein M. B., Weiss C., Silides D. J. Enzymatic maturation of mouse cerebral neocortex in vitro and in situ. Exp Neurol. 1970 Mar;26(3):595–606. doi: 10.1016/0014-4886(70)90152-4. [DOI] [PubMed] [Google Scholar]
  14. Logan W. J., Snyder S. H. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature. 1971 Dec 3;234(5327):297–299. doi: 10.1038/234297b0. [DOI] [PubMed] [Google Scholar]
  15. Nagata Y., Yokoi Y., Tsukada Y. Studies on free amino acid metabolism in excised cervical sympathetic ganglia from the rat. J Neurochem. 1966 Dec;13(12):1421–1431. doi: 10.1111/j.1471-4159.1966.tb04303.x. [DOI] [PubMed] [Google Scholar]
  16. SALVADOR R. A., ALBERS R. W. The distribution of glutamic-gamma-aminobutric transaminase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):922–925. [PubMed] [Google Scholar]
  17. SISKEN B., ROBERTS E. RADIOAUTOGRAPHIC STUDIES OF BINDING OF GAMMA-AMINOBUTYRIC ACID TO THE ABDOMINAL STRETCH RECEPTORS OF THE CRAYFISH. Biochem Pharmacol. 1964 Jan;13:95–103. doi: 10.1016/0006-2952(64)90083-8. [DOI] [PubMed] [Google Scholar]
  18. Seeds N. W. Biochemical differentiation in reaggregating brain cell culture. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1858–1861. doi: 10.1073/pnas.68.8.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snyder S. H., Hendley E. D., Gfeller E. Regional differences in accumulation of tritium-labeled norepinephrine, 5-hydroxytryptamine and gamma-aminobutyric acid in brain slices of spider and rhesus monkey. Brain Res. 1969 Dec;16(2):469–477. doi: 10.1016/0006-8993(69)90239-x. [DOI] [PubMed] [Google Scholar]
  20. Sotelo C., Privat A., Drian M. J. Localization of ( 3 H)GABA in tissue culture of rat cerebellum using electron microscopy radioautography. Brain Res. 1972 Oct 13;45(1):302–308. doi: 10.1016/0006-8993(72)90242-9. [DOI] [PubMed] [Google Scholar]
  21. Tunnicliff G., Kim S. U. Synaptogenesis and the development of neurotransmitter enzymes in organotypic cultures of chick spinal cord. Brain Res. 1973 Jan 30;49(2):410–416. doi: 10.1016/0006-8993(73)90432-0. [DOI] [PubMed] [Google Scholar]
  22. WALLACH D. P. Studies on the GABA pathway. I. The inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase in vitro and in vivo by U-7524 (amino-oxyacetic acid). Biochem Pharmacol. 1961 Feb;5:323–331. doi: 10.1016/0006-2952(61)90023-5. [DOI] [PubMed] [Google Scholar]
  23. WEINSTEIN H., VARON S., MUHLEMAN D. R., ROBERTS E. A CARRIER-MEDIATED TRANSFER MODEL FOR THE ACCUMULATION OF 14-C-GAMMA-AMINOBUTYRIC ACID BY SUBCELLULAR BRAIN PARTICLES. Biochem Pharmacol. 1965 Mar;14:273–288. doi: 10.1016/0006-2952(65)90192-9. [DOI] [PubMed] [Google Scholar]
  24. Werner I., Peterson G. R., Shuster L. Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J Neurochem. 1971 Jan;18(1):141–151. doi: 10.1111/j.1471-4159.1971.tb00176.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES