Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Jun;134(2):659–662. doi: 10.1042/bj1340659

Formation of ceramide phosphorylethanolamine from phosphatidylethanolamine in the rumen protozoon Entodinium caudatum (Short Communication)

Tom E Broad 1, Rex M C Dawson 1
PMCID: PMC1177856  PMID: 16742830

Abstract

From `pulse'-labelling experiments of Entodinium caudatum with [14C]ethanolamine and by incubating the organism with [32P]phosphatidylethanolamine it is concluded that phosphatidylethanolamine can act as a direct precursor of the phosphorylethanolamine moiety of ceramide phosphorylethanolamine. The phosphorylethanolamine is probably never liberated in the free form but is transferred directly to a ceramide or ceramide-containing acceptor. The results are also in agreement with previous conclusions that phosphatidylethanolamine is the direct lipid precursor of N-(1-carboxyethyl)phosphatidylethanolamine.

Full text

PDF
659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COLEMAN G. S. The preparation and survival of almost bacteria-free suspensions of Entodinium caudatum. J Gen Microbiol. 1962 Jun;28:271–281. doi: 10.1099/00221287-28-2-271. [DOI] [PubMed] [Google Scholar]
  2. Coleman G. S., Kemp P., Dawson R. M. The catabolism of phosphatidylethanolamine by the rumen protozoon Entodinium caudatum and its conversion into the N-(1-carboxyethyl) derivative. Biochem J. 1971 Jun;123(1):97–104. doi: 10.1042/bj1230097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAWSON R. M., BANGHAM A. D. The activation of surface films of lecithin by amphipathic molecules. Biochem J. 1959 Jul;72:493–496. doi: 10.1042/bj0720493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson R. M., Kemp P. Isolation of ceramide phosphorylethanolamine from the blowfly Calliphora erythrocephala. Biochem J. 1968 Jan;106(1):319–320. doi: 10.1042/bj1060319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson R. M., Kemp P. The aminoethylphosphonate-containing lipids of rumen protozoa. Biochem J. 1967 Nov;105(2):837–842. doi: 10.1042/bj1050837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson R. M., Kemp P. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem J. 1969 Nov;115(2):351–352. doi: 10.1042/bj1150351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diringer H., Marggraf W. D., Koch M. A., Anderer F. A. Evidence for a new biosynthetic pathway of sphingomyelin in SV 40 transformed mouse cells. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1345–1352. doi: 10.1016/0006-291x(72)90220-3. [DOI] [PubMed] [Google Scholar]
  8. Hildenbrandt G. R., Abraham T., Bieber L. L. Metabolism of ceramide phosphorylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidylglycerol by housefly larvae. Lipids. 1971 Jul;6(7):508–516. doi: 10.1007/BF02531237. [DOI] [PubMed] [Google Scholar]
  9. Hori T., Sugita M., Arakawa I. Structural elucidation of sphingoethanolamine and its distribution in aquatic animals. Biochim Biophys Acta. 1968 Jan 10;152(1):211–213. [PubMed] [Google Scholar]
  10. LaBach J. P., White D. C. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J Lipid Res. 1969 Sep;10(5):528–534. [PubMed] [Google Scholar]
  11. Smith J. D., Law J. H. Phosphatidylcholine biosynthesis in Tetrahymena pyriformis. Biochim Biophys Acta. 1970 Feb 10;202(1):141–152. doi: 10.1016/0005-2760(70)90225-0. [DOI] [PubMed] [Google Scholar]
  12. White R. W. Viable bacteria inside the rumen ciliate Entodinium caudatum. J Gen Microbiol. 1969 Jun;56(3):403–408. doi: 10.1099/00221287-56-3-403. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES