Abstract
Pyridoxine deficiency in post-weanling rats caused a marked decrease in body weight and a small but significant decrease in brain weight. Although the concentration of circulating 5-hydroxytryptamine was markedly decreased, the concentrations of 5-hydroxytryptamine and noradrenaline in the brain were not affected. p-Chlorophenylalanine, an inhibitor of 5-hydroxytryptamine synthesis, decreased the 5-hydroxytryptamine content of brain to very low values in both the deficient and control animals, whereas the noradrenaline contents were not appreciably affected. The concentration of 5-hydroxytryptamine in blood, the origin of which is primarily gastrointestinal, was decreased only in the controls but not in the deficient animals after p-chlorophenylalanine treatment. These results suggest that whereas l-tryptophan hydroxylase (EC 1.14.3.2) is rate-limiting in the brain as has been reported by others, the pyridoxal 5′-phosphate-dependent enzyme 5-hydroxytryptophan decarboxylase (EC 4.1.1.28) may be more important in the gastrointestinal tract in the regulation of 5-hydroxytryptamine synthesis.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhagavan H. N., Coursin D. B. Effect of pyridoxine deficiency on nucleic acid and protein contents of brain and liver in rats. Int J Vitam Nutr Res. 1971;41(3):419–423. [PubMed] [Google Scholar]
- Bhagavan H. N., Coursin D. B. In vivo incorporation of L-(U- 14 C) lysine and L-(U- 14 C) leucine into brain proteins in pyridoxine deficiency. Int J Vitam Nutr Res. 1971;41(2):231–239. [PubMed] [Google Scholar]
- Bhagavan H. N., Coursin D. B., Stewart C. N. Monosodium glutamate induces convulsive disorders in rats. Nature. 1971 Jul 23;232(5308):275–276. doi: 10.1038/232275a0. [DOI] [PubMed] [Google Scholar]
- Brody J. F., Jr Behavioral effects of serotonin depletion and of p-chlorophenylalanine (a serotonin depletor) in rats. Psychopharmacologia. 1970;17(1):14–33. doi: 10.1007/BF00402088. [DOI] [PubMed] [Google Scholar]
- DAVIS V. E. Effect of cortisone and thyroxine on aromatic amino acid decarboxylation. Endocrinology. 1963 Jan;72:33–38. doi: 10.1210/endo-72-1-33. [DOI] [PubMed] [Google Scholar]
- Dakshinamurti K., Stephens M. C. Pyridoxine deficiency in the neonatal rat. J Neurochem. 1969 Nov;16(11):1515–1522. doi: 10.1111/j.1471-4159.1969.tb09906.x. [DOI] [PubMed] [Google Scholar]
- Eberle E. D., Eiduson S. Effect of pyridoxine deficiency on aromatic L-amino acid decarboxylase in the developing rat liver and brain. J Neurochem. 1968 Oct;15(10):1071–1083. doi: 10.1111/j.1471-4159.1968.tb06825.x. [DOI] [PubMed] [Google Scholar]
- Fernstrom J. D., Wurtman R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science. 1971 Jul 9;173(3992):149–152. doi: 10.1126/science.173.3992.149. [DOI] [PubMed] [Google Scholar]
- Jéquier E., Lovenberg W., Sjoerdsma A. Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Mol Pharmacol. 1967 May;3(3):274–278. [PubMed] [Google Scholar]
- Koe B. K. Tryptophan hydroxylase inhibitors. Fed Proc. 1971 May-Jun;30(3):886–896. [PubMed] [Google Scholar]
- Koe B. K., Weissman A. p-Chlorophenylalanine: a specific depletor of brain serotonin. J Pharmacol Exp Ther. 1966 Dec;154(3):499–516. [PubMed] [Google Scholar]
- Maruyama H., Coursin D. B. Enzymic assay of pyridoxal phosphate using tyrosine apodecarboxylase and tyrosine-1-14C. Anal Biochem. 1968 Dec;26(3):420–429. doi: 10.1016/0003-2697(68)90203-0. [DOI] [PubMed] [Google Scholar]
- McGeer E. G., Peters D. A., McGeer P. L. Inhibition of rat brain tryptophan hydroxylase by 6-halotryptophans. Life Sci. 1968 Jun 15;7(12):605–615. doi: 10.1016/0024-3205(68)90082-9. [DOI] [PubMed] [Google Scholar]
- Moir A. T., Eccleston D. The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J Neurochem. 1968 Oct;15(10):1093–1108. doi: 10.1111/j.1471-4159.1968.tb06827.x. [DOI] [PubMed] [Google Scholar]
- Schlesinger K., Schreiber R. A. Interaction of drugs and pyridoxine deficiency on central nervous system excitability. Ann N Y Acad Sci. 1969 Sep 30;166(1):281–287. doi: 10.1111/j.1749-6632.1969.tb54278.x. [DOI] [PubMed] [Google Scholar]
- Shellenberger M. K., Gordon J. H. A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine, and 5-hydroxytryptamine from discrete brain areas. Anal Biochem. 1971 Feb;39(2):356–372. doi: 10.1016/0003-2697(71)90426-x. [DOI] [PubMed] [Google Scholar]
- Sourkes T. L., Missala K. Metabolism of dihydroxyphenylalanine and tryptophan in pyridoxine-deficient rats. Ann N Y Acad Sci. 1969 Sep 30;166(1):235–245. doi: 10.1111/j.1749-6632.1969.tb54274.x. [DOI] [PubMed] [Google Scholar]
- Tagliamonte A., Tagliamonte P., Perez-Cruet J., Gessa G. L. Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis. Nat New Biol. 1971 Jan 27;229(4):125–126. doi: 10.1038/newbio229125a0. [DOI] [PubMed] [Google Scholar]
- WEBER F., WISS O. [On the distinct influence of vitamin B6 deficiency on tryptophan metabolism in the rat]. Hoppe Seylers Z Physiol Chem. 1963 Mar;331:124–131. doi: 10.1515/bchm2.1963.331.1.124. [DOI] [PubMed] [Google Scholar]
- WISS O., WEBER F. BIOCHEMICAL PATHOLOGY OF VITAMIN B6 DEFICIENCY. Vitam Horm. 1964;22:495–501. doi: 10.1016/s0083-6729(08)60350-7. [DOI] [PubMed] [Google Scholar]
- Welch A. S., Welch B. L. Solvent extraction method for simultaneous determination of norepinephrine, dopamine, serotonin, and 5-hydroxyindoleacetic acid in a single mouse brain. Anal Biochem. 1969 Aug;30(2):161–179. doi: 10.1016/0003-2697(69)90387-x. [DOI] [PubMed] [Google Scholar]
- Yuwiler A., Plotkin S., Geller E., Ritvo E. R. A rapid accurate procedure for the determination of serotonin in whole human blood. Biochem Med. 1970 Apr;3(5):426–431. doi: 10.1016/0006-2944(70)90010-4. [DOI] [PubMed] [Google Scholar]
