Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Aug;134(4):1001–1008. doi: 10.1042/bj1341001

The acute action of ammonia on rat brain metabolism in vivo

Richard A Hawkins 1, Alexander L Miller 1, Richard C Nielsen 1, Richard L Veech 1
PMCID: PMC1177908  PMID: 4762748

Abstract

1. Acute NH4+ toxicity was studied by using a new apparatus that removes and freezes the brains of conscious rats within 1s. 2. Brains were removed and frozen 5min after intraperitoneal injection of ammonium acetate (2–3min before the onset of convulsions). Arterial [NH4+] rose from less than 0.01 to 1.74mm at 4–5min. The concentrations of all glycolytic intermediates measured, except glucose 6-phosphate, were increased by the indicated percentage above the control value as follows: glucose (by 41%), fructose 1,6-diphosphate (by 133%), dihydroxyacetone phosphate (by 164%), α-glycerophosphate (by 45%), phosphoenolpyruvate (by 67%) and pyruvate (by 26%). 4. Citrate and α-oxoglutarate concentrations were unchanged and that of malate was increased (by 17%). 5. Adenine nucleotides and Pi concentrations were unchanged but the concentration of creatine phosphate decreased slightly (by 6%). 6. Brain [NH4+] increased from 0.2 to 1.53mm. Net glutamine synthesis occurred at an average rate of 0.33μmol/min per g. 7. The rate of brain glucose utilization was measured in vivo as 0.62μmol/min per g in controls and 0.81μmol/min per g after NH4+ injection. 8. The arteriovenous difference of glucose and O2 increased by 35%. 9. No significant arteriovenous differences of glutamate or glutamine were detected. Thus, although much NH4+ was incorporated into glutamine the latter was not rapidly released from the brain to the circulation. 10. Plasma [K+] increased from 3.3 to 5.4mm. 11. The results indicate that NH4+ stimulates oxidative metabolism but does not interfere with brain energy balance. The increased rate of oxidative metabolism could not be accounted for only on the basis of glutamine synthesis. We suggest that increased extracellular [NH4+] and [K+] decreased the resting transmembrane potential and stimulated Na+,K+-stimulated adenosine triphosphatase activity thus accounting for the increased metabolic rate.

Full text

PDF
1001

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERL S., TAKAGAKI G., CLARKE D. D., WAELSCH H. Carbon dioxide fixation in the brain. J Biol Chem. 1962 Aug;237:2570–2573. [PubMed] [Google Scholar]
  2. BESSMAN S. P., BESSMAN A. N. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest. 1955 Apr;34(4):622–628. doi: 10.1172/JCI103111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berl S. Cerebral amino acid metabolism in hepatic coma. Exp Biol Med. 1971;4:71–84. [PubMed] [Google Scholar]
  4. Binstock L., Lecar H. Ammonium ion currents in the squid giant axon. J Gen Physiol. 1969 Mar;53(3):342–361. doi: 10.1085/jgp.53.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duffy T. E., Nelson S. R., Lowry O. H. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J Neurochem. 1972 Apr;19(4):959–977. doi: 10.1111/j.1471-4159.1972.tb01417.x. [DOI] [PubMed] [Google Scholar]
  6. Felicioli R. A., Gabrielli F., Rossi C. A. Pyruvate carboxylase activity of mammalian brain cortex. Life Sci. 1967 Jan 15;6(2):133–143. doi: 10.1016/0024-3205(67)90341-4. [DOI] [PubMed] [Google Scholar]
  7. GAITONDE M. K. RATE OF UTILIZATION OF GLUCOSE AND 'COMPARTMENTATION' OF ALPHA-OXOGLUTARATE AND GLUTAMATE IN RAT BRAIN. Biochem J. 1965 Jun;95:803–810. doi: 10.1042/bj0950803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg N. D., Passonneau J. V., Lowry O. H. Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J Biol Chem. 1966 Sep 10;241(17):3997–4003. [PubMed] [Google Scholar]
  9. Guynn R. W., Veloso D., Veech R. L. Enzymic determination of inorganic phosphate in the presence of creatine phosphate. Anal Biochem. 1972 Jan;45(1):277–285. doi: 10.1016/0003-2697(72)90028-0. [DOI] [PubMed] [Google Scholar]
  10. HOROWICZ P., GERBER C. J. EFFECTS OF EXTERNAL POTASSIUM AND STROPHANTHIDIN ON SODIUM FLUXES IN FROG STRIATED MUSCLE. J Gen Physiol. 1965 Jan;48:489–514. doi: 10.1085/jgp.48.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawkins R. A., Nielsen R. C., Veech R. L. The measurement of the inorganic phosphate content of brain in the presence of bone fragments. J Neurochem. 1973 Jan;20(1):35–38. doi: 10.1111/j.1471-4159.1973.tb12101.x. [DOI] [PubMed] [Google Scholar]
  12. Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hindfelt B., Siesjö B. K. Cerebral effects of acute ammonia intoxication. II. The effect upon energy metabolism. Scand J Clin Lab Invest. 1971 Nov;28(3):365–374. doi: 10.3109/00365517109095711. [DOI] [PubMed] [Google Scholar]
  14. KIRSTEN E., GEREZ C., KIRSTEN R. [An enzymatic microdetermination method for ammonia, specifically for extracts of animal tissues and fluids. Determination of NH4 ions in blood]. Biochem Z. 1963;337:312–319. [PubMed] [Google Scholar]
  15. Kvamme E., Tveit B., Svenneby G. Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem. 1970 Apr 25;245(8):1871–1877. [PubMed] [Google Scholar]
  16. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  17. Londesborough J. C., Dalziel K. The equilibrium constant of the isocitrate dehydrogenase reaction. Biochem J. 1968 Nov;110(2):217–222. doi: 10.1042/bj1100217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lund P. Control of glutamine synthesis in rat liver. Biochem J. 1971 Sep;124(3):653–660. doi: 10.1042/bj1240653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lux H. D., Loracher C., Neher E. The action of ammonium on postsynaptic inhibition of cat spinal motoneurons. Exp Brain Res. 1970;11(5):431–447. doi: 10.1007/BF00233967. [DOI] [PubMed] [Google Scholar]
  20. Moellering H., Gruber W. Determination of citrate with citrate lyase. Anal Biochem. 1966 Dec;17(3):369–376. doi: 10.1016/0003-2697(66)90172-2. [DOI] [PubMed] [Google Scholar]
  21. RECKNAGEL R. O., POTTER V. R. Mechanism of the ketogenic effect of ammonium chloride. J Biol Chem. 1951 Jul;191(1):263–275. [PubMed] [Google Scholar]
  22. RYBOVA R. The effect of cations on ammonia accumulation in brain cortex slices. J Neurochem. 1959 Oct;4:304–310. doi: 10.1111/j.1471-4159.1959.tb13209.x. [DOI] [PubMed] [Google Scholar]
  23. Schenker S., McCandless D. W., Brophy E., Lewis M. S. Studies on the intracerebral toxicity of ammonia. J Clin Invest. 1967 May;46(5):838–848. doi: 10.1172/JCI105583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. VRBA R., FOLBERGR J., KANTUREK V. On the mechanism of ammonia formation in guinea pig brain slices. J Neurochem. 1958;2(2-3):187–196. doi: 10.1111/j.1471-4159.1958.tb12363.x. [DOI] [PubMed] [Google Scholar]
  25. Veech R. L., Harris R. L., Veloso D., Veech E. H. Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem. 1973 Jan;20(1):183–188. doi: 10.1111/j.1471-4159.1973.tb12115.x. [DOI] [PubMed] [Google Scholar]
  26. WAELSCH H., BERL H. W., ROSSI C. A., CLARKE D. D., PURPURA D. P. QUANTITATIVE ASPECTS OF CO2 FIXATION IN MAMMALIAN BRAIN IN VIVO. J Neurochem. 1964 Oct;11:717–728. doi: 10.1111/j.1471-4159.1964.tb06117.x. [DOI] [PubMed] [Google Scholar]
  27. WEBSTER L. T., Jr, GABUZDA G. J. Ammonium uptake by the extremities and brain in hepatic coma. J Clin Invest. 1958 Mar;37(3):414–424. doi: 10.1172/JCI103621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whittam R., Wheeler K. P. Transport across cell membranes. Annu Rev Physiol. 1970;32:21–60. doi: 10.1146/annurev.ph.32.030170.000321. [DOI] [PubMed] [Google Scholar]
  29. Williams A. H., Kyu M. H., Fenton J. C., Cavanagh J. B. The glutamate and glutamine content of rat brain after portocaval anastomosis. J Neurochem. 1972 Apr;19(4):1073–1077. doi: 10.1111/j.1471-4159.1972.tb01427.x. [DOI] [PubMed] [Google Scholar]
  30. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES