Abstract
1. A simple technique has been developed to obtain subcellular fractions of chick bone. The method yielded 60–70% of total DNA in the nuclear debris fraction and 80–90% of total 14C recovered in bone after a dose of radioactive vitamin D. 2. After a dose of [4-14C,1,2-3H2]cholecalciferol (0.5μg) was given to vitamin D-deficient chicks, the time-course of total 14C radioactivity in the epiphysis, metaphysis and diaphysis of proximal tibiae was measured. The maximum concentrations were reached at 6h, corresponding to a similar peak of radioactivity in blood, decreasing until 24h and indicating the dependence on the circulating 14C and on the blood supply of the three bone components. 3. The 14C radioactivity of cholecalciferol and 25-hydroxycholecalciferol (expressed per mg of DNA) followed the pattern of incorporation of total 14C radioactivity in all three bone components. The more polar metabolite fraction reached a peak of radioactivity at 6–9h and maintained its concentration over the 24h period studied in all anatomical bone components. 4. After a dose of [4-14C,1-3H]cholecalciferol (0.5μg) was given to vitamin D-deficient chicks, the subcellular distribution was studied. At 24h after dosing, the nuclear fraction contained 27% and the supernatant fraction had 67% of total 14C recovered in the bone filtrate. When the 14C in the residual bone fragments was included, the nuclear fraction contained up to 35% of the total radioactivity in the bone. 5. The subcellular distribution pattern of individual vitamin D metabolites indicated that the purified nuclear fraction concentrated the polar metabolite, which lost 3H at C-1, so that 77% of the radioactivity could be accounted for by 1,25-dihydroxycholecalciferol. The supernatant fraction contained smaller amounts of 1,25-dihydroxycholecalciferol (9%), with 66% of 25-hydroxycholecalciferol forming the major metabolite, corresponding to its concentration found in blood at 24h. 6. The preferential accumulation of 1,25-dihydroxycholecalciferol in the nuclear fraction and the overall pattern of other metabolites, found previously in intestinal tissue, suggests a similar mechanism of action in bone to that postulated for the intestinal cell in calcium translocation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell P. A., Kodicek E. The stereospecificity of tritium distribution in [1-3H]- and [1,2-3H2]-cholesterol and -cholecalciferol. Biochem J. 1970 Feb;116(4):755–757. doi: 10.1042/bj1160755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blunt J. W., DeLuca H. F., Schnoes H. K. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1968 Oct;7(10):3317–3322. doi: 10.1021/bi00850a001. [DOI] [PubMed] [Google Scholar]
- Cousins R. J., DeLuca H. F., Chen T., Suda T., Tanaka Y. Metabolism and subcellular location of 25-hydroxycholecalciferol in intestinal mucosa. Biochemistry. 1970 Mar 17;9(6):1453–1459. doi: 10.1021/bi00808a021. [DOI] [PubMed] [Google Scholar]
- Cousins R. J., DeLuca H. F., Gray R. W. Metaboism of 25-hydroxycholecalciferol in target and nontarget tissues. Biochemistry. 1970 Sep 15;9(19):3649–3652. doi: 10.1021/bi00821a001. [DOI] [PubMed] [Google Scholar]
- DeLuca H. F., Suda T., Schnoes H. K., Tanaka Y., Holick M. F. 25,26-dihydroxycholecalciferol, a metabolite of vitamin D3 with intestinal calcium transport activity. Biochemistry. 1970 Nov 24;9(24):4776–4780. doi: 10.1021/bi00826a022. [DOI] [PubMed] [Google Scholar]
- Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
- Hallick R. B., DeLuca H. F. Vitamin D3-stimulated template activity of chromatin from rat intestine. Proc Natl Acad Sci U S A. 1969 Jun;63(2):528–531. doi: 10.1073/pnas.63.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haussler M. R., Boyce D. W., Littledike E. T., Rasmussen H. A rapidly acting metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1971 Jan;68(1):177–181. doi: 10.1073/pnas.68.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haussler M. R., Myrtle J. F., Norman A. W. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. J Biol Chem. 1968 Aug 10;243(15):4055–4064. [PubMed] [Google Scholar]
- Kodicek E., Lawson D. E., Wilson P. W. Biological activity of a polar metabolite of vitamin D. Nature. 1970 Nov 21;228(5273):763–764. doi: 10.1038/228763a0. [DOI] [PubMed] [Google Scholar]
- Lawson D. E., Fraser D. R., Kodicek E., Morris H. R., Williams D. H. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature. 1971 Mar 26;230(5291):228–230. doi: 10.1038/230228a0. [DOI] [PubMed] [Google Scholar]
- Lawson D. E., Pelc B., Bell P. A., Wilson P. W., Kodicek E. Synthesis of (1,2- 3 H 2 )cholecalciferol and metabolism of (4- 14 C,1,2- 3 H 2 )- and (4- 14 C,1- 3 H)-cholecalciferol in rachitic rats and chicks. Biochem J. 1971 Feb;121(4):673–682. doi: 10.1042/bj1210673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawson D. E., Wilson P. W., Barker D. C., Kodicek E. Isolation of chick intestinal nuclei. Effect of vitamin D3 on nuclear metabolism. Biochem J. 1969 Nov;115(2):263–268. doi: 10.1042/bj1150263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawson D. E., Wilson P. W., Kodicek E. Metabolism of vitamin D. A new cholecalciferol metabolite, involving loss of hydrogen at C-1, in chick intestinal nuclei. Biochem J. 1969 Nov;115(2):269–277. doi: 10.1042/bj1150269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawson D. E., Wilson P. W., Kodicek E. New vitamin D metabolite localized in intestinal cell nuclei. Nature. 1969 Apr 12;222(5189):171–172. doi: 10.1038/222171a0. [DOI] [PubMed] [Google Scholar]
- Neville P. F., DeLuca H. F. The synthesis of [1,2-3H]vitamin D3 and the tissue localization of a 0.25-mu-g (10 IU) dose per rat. Biochemistry. 1966 Jul;5(7):2201–2207. doi: 10.1021/bi00871a007. [DOI] [PubMed] [Google Scholar]
- Nichols G., Jr, Rogers P. Mechanisms for the transfer of calcium into and out of the skeleton. Pediatrics. 1971 Jan;47(1 Suppl):211+–211+. [PubMed] [Google Scholar]
- Norman A. W. The mode of action of vitamin D. Biol Rev Camb Philos Soc. 1968 Feb;43(1):97–137. doi: 10.1111/j.1469-185x.1968.tb01111.x. [DOI] [PubMed] [Google Scholar]
- Stohs S. J., DeLuca H. F. Subcellular location of vitamin D and its metabolites in intestinal mucosa after a 10-IU dose. Biochemistry. 1967 Nov;6(11):3338–3349. doi: 10.1021/bi00863a002. [DOI] [PubMed] [Google Scholar]
- Stohs S. J., Zull J. E., DeLuca H. F. Vitamin D stimulation of [3H]orotic acid incorporation into ribonucleic acid of rat intestinal mucosa. Biochemistry. 1967 May;6(5):1304–1310. doi: 10.1021/bi00857a012. [DOI] [PubMed] [Google Scholar]
- Suda T., DeLuca H. F., Schnoes H. K., Ponchon G., Tanaka Y., Holick M. F. 21,25-dihydroxycholecalciferol. A metabolite of vitamin D3 preferentially active on bone. Biochemistry. 1970 Jul 7;9(14):2917–2922. doi: 10.1021/bi00816a025. [DOI] [PubMed] [Google Scholar]
- Trummel C. L., Raisz L. G., Blunt J. W., Deluca H. F. 25-Hydroxycholecalciferol: stimulation of bone resorption in tissue culture. Science. 1969 Mar 28;163(3874):1450–1451. doi: 10.1126/science.163.3874.1450. [DOI] [PubMed] [Google Scholar]
- Wilson P. W., Lawson D. E., Kodicek E. The intracellular distribution of [1-3H]cholecalciferol in the intestine of vitamin D-deficient and -supplemented rats. Biochem J. 1967 Apr;103(1):165–171. doi: 10.1042/bj1030165. [DOI] [PMC free article] [PubMed] [Google Scholar]