Abstract
The kinetics of the influx and efflux of radioactive l-glycine was studied in slices of rat cerebral cortex. The influx showed saturation kinetics and was inhibited by l-alanine. Influx was dependent on the presence of Na+ ions and a metabolizable substrate. The efflux of glycine was accelerated by alanine. It was concluded that carrier-mediated facilitated diffusion was the mechanism of glycine uptake by, and efflux from, cerebral slices.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABADOM P. N., SCHOLEFIELD P. G. Amino acid transport in brain cortex slices. I. The relation between energy production and the glucose-dependent transport of glycine. Can J Biochem Physiol. 1962 Nov;40:1575–1590. [PubMed] [Google Scholar]
- Barbosa D., Joanny P., Corriol J. Uptake of some amino acids by rat brain slices: effect of various substrates. Experientia. 1968 Dec 15;24(12):1196–1197. doi: 10.1007/BF02146616. [DOI] [PubMed] [Google Scholar]
- CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
- Cherayil A., Kandera J., Lajtha A. Cerebral amino acid transport in vitro. IV. The effect of inhibitors on exit from brain slices. J Neurochem. 1967 Jan;14(1):105–115. doi: 10.1111/j.1471-4159.1967.tb09499.x. [DOI] [PubMed] [Google Scholar]
- Corriol J., Joanny P., Millet Y. Gradients ioniques alcalins et respiration du cortex cérébral isolé de mammifére. Rôle du glucose, effets de la stimulation électrique et de divers agents de stimulation métabolique. Arch Int Physiol Biochim. 1964 Sep;72(4):615–631. doi: 10.3109/13813456409064102. [DOI] [PubMed] [Google Scholar]
- Cotlier E., Beaty C. The role of Na+ ions in the transport of alpha-aminoisobutyric acid and other amino acids into the lens. Invest Ophthalmol. 1967 Feb;6(1):64–75. [PubMed] [Google Scholar]
- Finerman G. A., Rosenberg L. E. Amino acid transport in bone. Evidence for separate transport systems for neutral amino and imino acids. J Biol Chem. 1966 Apr 10;241(7):1487–1493. [PubMed] [Google Scholar]
- JOANNY P., HILLMAN H. H. SUBSTRATES AND THE POTASSIUM AND SODIUM LEVELS OF GUINEA PIG: CEREBRAL CORTEX SLICES IN VITRO: EFFECTS OF APPLICATION OF ELECTRICAL PULSES, OF INHIBITORS AND OF ANOXIA. J Neurochem. 1963 Sep;10:655–664. doi: 10.1111/j.1471-4159.1963.tb08937.x. [DOI] [PubMed] [Google Scholar]
- Joanny P., Corriol J., Hillman H. Uptake of monosaccharides by guinea-pig cerebral-cortex slices. Biochem J. 1969 Apr;112(3):367–371. doi: 10.1042/bj1120367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
- Segal S., Schwartzman L., Blair A., Bertoli D. Dibasic amino acid transport in rat-kidney cortex slices. Biochim Biophys Acta. 1967 Feb 1;135(1):127–135. doi: 10.1016/0005-2736(67)90015-6. [DOI] [PubMed] [Google Scholar]
- Smith S. E. Kinetics of neutral amino acid transport in rat brain in vitro. J Neurochem. 1967 Mar;14(3):291–300. doi: 10.1111/j.1471-4159.1967.tb09526.x. [DOI] [PubMed] [Google Scholar]
- Stern J. R., Eggleston L. V., Hems R., Krebs H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem J. 1949;44(4):410–418. [PMC free article] [PubMed] [Google Scholar]
- TALLAN H. H., MOORE S., STEIN W. H. L-cystathionine in human brain. J Biol Chem. 1958 Feb;230(2):707–716. [PubMed] [Google Scholar]
- TALLAN H. H., MOORE S., STEIN W. H. Studies on the free amino acids and related compounds in the tissues of the cat. J Biol Chem. 1954 Dec;211(2):927–939. [PubMed] [Google Scholar]
- TEWS J. K., CARTER S. H., ROA P. D., STONE W. E. FREE AMINO ACIDS AND RELATED COMPOUNDS IN DOG BRAIN: POST-MORTEM AND ANOXIC CHANGES, EFFECTS OF AMMONIUM CHLORIDE INFUSION, AND LEVELS DURING SEIZURES INDUCED BY PICROTOXIN AND BY PENTYLENETETRAZOL. J Neurochem. 1963 Sep;10:641–653. doi: 10.1111/j.1471-4159.1963.tb08936.x. [DOI] [PubMed] [Google Scholar]
- TSUKADA Y., NAGATA Y., HIRANO S., MATSUTANI T. Active transport of amino acid into cerebral cortex slices. J Neurochem. 1963 Apr;10:241–256. doi: 10.1111/j.1471-4159.1963.tb05040.x. [DOI] [PubMed] [Google Scholar]
- VARDANIS A., QUASTEL J. H. The effects of lead and tin organometallic compounds on the metabolism of rat brain cortex slices. Can J Biochem Physiol. 1961 Dec;39:1811–1827. doi: 10.1139/o61-202. [DOI] [PubMed] [Google Scholar]
- WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
- WOODMAN R. J., McILWAIN H. Glutamic acid, other amino acids and related compounds as substrates for cerebral tissues: their effects on tissue phosphates. Biochem J. 1961 Oct;81:83–93. doi: 10.1042/bj0810083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler K. P., Inui Y., Hollenberg P. F., Eavenson E., Christensen H. N. Relation of amino acid transport to sodium-ion concentration. Biochim Biophys Acta. 1965 Nov 29;109(2):620–622. doi: 10.1016/0926-6585(65)90191-3. [DOI] [PubMed] [Google Scholar]
