Abstract
The degree of hydroxylation of the lysine residue located in both α1- and α2-chains of collagen in the N-terminal, non-helical telopeptide region of the molecule has been determined in collagen from various sources after isolation of the peptides (α1- and α2-CB1) that contain the lysine residue in question and are obtained by cyanogen bromide cleavage of collagen α1- and α2-chains respectively. As with collagen from chick tibia, bone collagens from rat tibia and femur and embryonic chick frontal bone, have a high degree of hydroxylation (approx. 50% or more) of the lysine residue in both α1- and α2-CB1 peptides. This is in contrast with the lack of hydroxylation of this residue in both α1- and α2-chains of all skin collagens so far examined. The presence of hydroxylysine in α1- and α2-CB1 peptides from tendon collagen is also indicated. In rat tail tendon collagen the amount of hydroxylation is only slight but in the much less soluble tendon collagen from embryonic chick leg tendons, approximately one-third of the lysine is hydroxylated.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey A. J., Fowler L. J., Peach C. M. Identification of two interchain crosslinks of bone and dentine collagen. Biochem Biophys Res Commun. 1969 Jun 6;35(5):663–671. doi: 10.1016/0006-291x(69)90456-2. [DOI] [PubMed] [Google Scholar]
- Barnes M. J., Constable B. J., Kodicek E. Studies in vivo on the biosynthesis of collagen and elastin in ascorbic acid-deficient guinea pigs. Biochem J. 1969 Jun;113(2):387–397. doi: 10.1042/bj1130387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornstein P., Nesse R. The comparative biochemistry of collagen: the structure of rabbit skin colllagen and its relevance to immunochemical studies of collagen. Arch Biochem Biophys. 1970 Jun;138(2):443–450. doi: 10.1016/0003-9861(70)90367-x. [DOI] [PubMed] [Google Scholar]
- Bornstein P., Piez K. A. The nature of the intramolecular cross-links in collagen. The separation and characterization of peptides from the cross-link region of rat skin collagen. Biochemistry. 1966 Nov;5(11):3460–3473. doi: 10.1021/bi00875a012. [DOI] [PubMed] [Google Scholar]
- Click E. M., Bornstein P. Isolation and characterization of the cyanogen bromide peptides from the alpha 1 and alpha 2 chains of human skin collagen. Biochemistry. 1970 Nov 24;9(24):4699–4706. doi: 10.1021/bi00826a012. [DOI] [PubMed] [Google Scholar]
- Epstein E. H., Jr, Scott R. D., Miller E. J., Piez K. A. Isolation and characterization of the peptides derived from soluble human and baboon skin collagen after cyanogen bromide cleavage. J Biol Chem. 1971 Mar 25;246(6):1718–1724. [PubMed] [Google Scholar]
- Fietzek P. P., Münch M., Breitkreutz D., Kühn K. Isolation and characterization of the cyanogen bromide peptides from the alpha2 chain of calf skin collagen. FEBS Lett. 1970 Aug 17;9(4):229–231. doi: 10.1016/0014-5793(70)80362-3. [DOI] [PubMed] [Google Scholar]
- Kang A. H., Bornstein P., Piez K. A. The amino acid sequence of peptides from the cross-linking region of rat skin collagen. Biochemistry. 1967 Mar;6(3):788–795. doi: 10.1021/bi00855a019. [DOI] [PubMed] [Google Scholar]
- Kang A. H., Igarashi S., Gross J. Characterization of the cyanogen bromide peptides from the alpha-2 chain of chick skin collagen. Biochemistry. 1969 Aug;8(8):3200–3204. doi: 10.1021/bi00836a011. [DOI] [PubMed] [Google Scholar]
- Kennedy J. F. Liquid scintillation counting medium for aqueous samples. Experientia. 1969 Oct 15;25(10):1120–1120. doi: 10.1007/BF01901473. [DOI] [PubMed] [Google Scholar]
- Lane J. M., Miller E. J. Isolation and characterization of the peptides derived from the alpha 2 chain of chick bone collagen after cyanogen bromide cleavage. Biochemistry. 1969 May;8(5):2134–2139. doi: 10.1021/bi00833a053. [DOI] [PubMed] [Google Scholar]
- Manning J. M., Meister A. Conversion of proline to collagen hydroxyproline. Biochemistry. 1966 Apr;5(4):1154–1165. doi: 10.1021/bi00868a007. [DOI] [PubMed] [Google Scholar]
- Miller E. J., Epstein E. H., Jr, Piez K. A. Identification of three genetically distinct collagens by cyanogen bromide cleavage of insoluble human skin and cartilage collagen. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1024–1029. doi: 10.1016/0006-291x(71)90006-4. [DOI] [PubMed] [Google Scholar]
- Miller E. J., Martin G. R., Piez K. A., Powers M. J. Characterization of chick bone collagen and compositional changes associated with maturation. J Biol Chem. 1967 Dec 10;242(23):5481–5489. [PubMed] [Google Scholar]
- Miller E. J., Matukas V. J. Chick cartilage collagen: a new type of alpha 1 chain not present in bone or skin of the species. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1264–1268. doi: 10.1073/pnas.64.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POPENOE E. A., ARONSON R. B., VANSLYKE D. D. THE FORMATION OF COLLAGEN HYDROXYLYSINE STUDIED WITH TRITIATED LYSINE. J Biol Chem. 1965 Jul;240:3089–3092. [PubMed] [Google Scholar]
- Rauterberg J., Kühn K. Acid soluble calf skin collagen. Characterization of the peptides obtained by cyanogen bromide cleavage of its alpha-1-chain. Eur J Biochem. 1971 Apr;19(3):398–407. doi: 10.1111/j.1432-1033.1971.tb01329.x. [DOI] [PubMed] [Google Scholar]
- Trelstad R. L., Kang A. H., Igarashi S., Gross J. Isolation of two distinct collagens from chick cartilage. Biochemistry. 1970 Dec 8;9(25):4993–4998. doi: 10.1021/bi00827a025. [DOI] [PubMed] [Google Scholar]