Abstract
Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
- BELAUICH J. P., SENEZ J. C. INFLUENCE OF AERATION AND OF PANTOTHENATE ON GROWTH YIELDS OF ZYMOMONAS MOBILIS. J Bacteriol. 1965 May;89:1195–1200. doi: 10.1128/jb.89.5.1195-1200.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bexon J., Dawes E. A. The nutrition of Zymomonas anaerobia. J Gen Microbiol. 1970 Mar;60(3):421–425. doi: 10.1099/00221287-60-3-421. [DOI] [PubMed] [Google Scholar]
- Byrne G. A. The separation of 2,4-dinitrophenylhydrazones by thin-layer chromatography. J Chromatogr. 1965 Dec;20(3):528–540. doi: 10.1016/s0021-9673(01)97455-2. [DOI] [PubMed] [Google Scholar]
- DAWES E. A. COMPARATIVE ASPECTS OF ALCOHOL FORMATION. J Gen Microbiol. 1963 Aug;32:151–155. doi: 10.1099/00221287-32-2-151. [DOI] [PubMed] [Google Scholar]
- Dawes E. A., Ribbons D. W., Large P. J. The route of ethanol formation in Zymomonas mobilis. Biochem J. 1966 Mar;98(3):795–803. doi: 10.1042/bj0980795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawes E. A., Ribbons D. W., Rees D. A. Sucrose utilization by Zymomonas mobilis: formation of a levan. Biochem J. 1966 Mar;98(3):804–812. doi: 10.1042/bj0980804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
- GIBBS M., DEMOSS R. D. Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. J Biol Chem. 1954 Apr;207(2):689–694. [PubMed] [Google Scholar]
- HULLIN R. P., NOBLE R. L. The determination of lacic acid in microgram quantities. Biochem J. 1953 Sep;55(2):289–291. doi: 10.1042/bj0550289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACGEE J., DOUDOROFF M. A new phosphorylated intermediate in glucose oxidation. J Biol Chem. 1954 Oct;210(2):617–626. [PubMed] [Google Scholar]
- MALLETTE M. F. Validity of the concept of energy of maintenance. Ann N Y Acad Sci. 1963 Jan 21;102:521–535. doi: 10.1111/j.1749-6632.1963.tb13658.x. [DOI] [PubMed] [Google Scholar]
- MILLIS N. F. A study of the cider-sickness bacillus; a new variety of Zymomonas anaerobia. J Gen Microbiol. 1956 Dec;15(3):521–528. doi: 10.1099/00221287-15-3-521. [DOI] [PubMed] [Google Scholar]
- Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
- RAPS S., DEMOSS R. D. Glycolytic enzymes in Zymomonas mobilis. J Bacteriol. 1962 Jul;84:115–118. doi: 10.1128/jb.84.1.115-118.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SENEZ J. C. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962 Jun;26:95–107. [PMC free article] [PubMed] [Google Scholar]
- SRINIVASAN P. R., SPRINSON D. B. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716–722. [PubMed] [Google Scholar]
- STERN I. J., WANG C. H., GILMOUR C. M. Comparative catabolism of carbohydrates in Pseudomonas species. J Bacteriol. 1960 Apr;79:601–611. doi: 10.1128/jb.79.4.601-611.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STICKLAND L. H. The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol. 1951 Oct;5(4):698–703. doi: 10.1099/00221287-5-4-698. [DOI] [PubMed] [Google Scholar]
- WOLIN M. J. FRUCTOSE-1,6-DIPHOSPHATE REQUIREMENT OF STREPTOCOCCAL LACTIC DEHYDROGENASES. Science. 1964 Nov 6;146(3645):775–777. doi: 10.1126/science.146.3645.775. [DOI] [PubMed] [Google Scholar]
- de Vries W., Gerbrandy S. J., Stouthamer A. H. Carbohydrate metabolism in Bifidobacterium bifidum. Biochim Biophys Acta. 1967 Apr 25;136(3):415–425. doi: 10.1016/0304-4165(67)90001-3. [DOI] [PubMed] [Google Scholar]