Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Mar;127(1):87–96. doi: 10.1042/bj1270087

Phosphatase synthesis in Klebsiella (Aerobacter) aerogenes growing in continuous culture

P G Bolton 1, A C R Dean 1
PMCID: PMC1178562  PMID: 4342213

Abstract

1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNES E. H., MORRIS J. F. A quantitative study of the phosphatase activity of Micrococcus pyogenes. J Bacteriol. 1957 Jan;73(1):100–104. doi: 10.1128/jb.73.1.100-104.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHARGAFF E., TUNIS M. Separation of nucleoside phosphotransferase and phosphatase activities. Biochim Biophys Acta. 1956 Jul;21(1):204–205. doi: 10.1016/0006-3002(56)90132-9. [DOI] [PubMed] [Google Scholar]
  3. Clarke P. H., Houldsworth M. A., Lilly M. D. Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa 8602 in continuous culture. J Gen Microbiol. 1968 Apr;51(2):225–234. doi: 10.1099/00221287-51-2-225. [DOI] [PubMed] [Google Scholar]
  4. Dean A. C., Rodgers P. J. Steady state levels of dehydrogenases and alpha- and beta-glucosidases in Klebsiella aerogenes. J Gen Microbiol. 1969 Aug;57(2):169–178. doi: 10.1099/00221287-57-2-169. [DOI] [PubMed] [Google Scholar]
  5. Dean A. C., Rogers P. L. The cell size and macromolecular composition of Aerobacter aerogenes in various systems of continuous culture. Biochim Biophys Acta. 1967 Oct 9;148(1):267–279. doi: 10.1016/0304-4165(67)90302-9. [DOI] [PubMed] [Google Scholar]
  6. ENGLESBERG E., WATSON J. A., HOFFEE P. A. The glucose effect and the relationship between glucose permease, acid phosphatase, and glucose resistance. Cold Spring Harb Symp Quant Biol. 1961;26:261–276. doi: 10.1101/sqb.1961.026.01.033. [DOI] [PubMed] [Google Scholar]
  7. FUJIMOTO A., INGRAM P., SMITH R. A. D-GLUCOSE-I-PHOSPHATE:D-GLUCOSE-6-PHOSPHOTRANSFERASE. Biochim Biophys Acta. 1965 Jan;96:91–101. doi: 10.1016/0005-2787(65)90613-1. [DOI] [PubMed] [Google Scholar]
  8. GREEN H., MEYERHOF O. Synthetic action of phosphatase. III. Transphosphorylation with intestinal and semen phosphatase. J Biol Chem. 1952 May;197(1):347–364. [PubMed] [Google Scholar]
  9. HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
  10. HORIUCHI T., HORIUCHI S., MIZUNO D. A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature. 1959 May 30;183(4674):1529–1530. doi: 10.1038/1831529b0. [DOI] [PubMed] [Google Scholar]
  11. KLUNGSOEYR L., ENDRESEN A. INTRACELLULAR PH EFFECT UPON PHOSPHOGLUCOSE ISOMERASE IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Nov 22;92:378–387. [PubMed] [Google Scholar]
  12. KOCH A. L. THE ROLE OF PERMEASE IN TRANSPORT. Biochim Biophys Acta. 1964 Jan 27;79:177–200. doi: 10.1016/0926-6577(64)90050-6. [DOI] [PubMed] [Google Scholar]
  13. KOCH A. L. The inactivation of the transport mechanism for beta-galactosides of Escherichia coli under various physiological conditions. Ann N Y Acad Sci. 1963 Jan 21;102:602–620. doi: 10.1111/j.1749-6632.1963.tb13663.x. [DOI] [PubMed] [Google Scholar]
  14. KUO M. H., BLUMENTHAL H. J. Absence of phosphatase repression by inorganic phosphate in some micro-organisms. Nature. 1961 Apr 1;190:29–31. doi: 10.1038/190029a0. [DOI] [PubMed] [Google Scholar]
  15. LEVINTHAL C. Genetic and chemical studies with alkaline phosphatase of E. coli. Brookhaven Symp Biol. 1959 Nov;12:76–85. [PubMed] [Google Scholar]
  16. Lee Y. P., Sowokinos J. R. Sugar phosphate phosphohydrolase. I. Substrate specificity, intracellular localization, and purification from Neisseria meningitidis. J Biol Chem. 1967 May 10;242(9):2264–2271. [PubMed] [Google Scholar]
  17. MCCARTHY B. J., HINSHEL WOOD C. The phosphatase activity of Bacterium lactis aerogenes. Proc R Soc Lond B Biol Sci. 1959 Sep 1;150:474–485. doi: 10.1098/rspb.1959.0036. [DOI] [PubMed] [Google Scholar]
  18. MORTON R. K. Transferase activity of hydrolytic enzymes. Nature. 1953 Jul 11;172(4367):65–68. doi: 10.1038/172065a0. [DOI] [PubMed] [Google Scholar]
  19. Malveaux F. J., Clemente C. L. Staphylococcal acid phosphatase: extensive purification and characterization of the loosely bound enzyme. J Bacteriol. 1969 Mar;97(3):1209–1214. doi: 10.1128/jb.97.3.1209-1214.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malveaux F. J., Clemente C. L. Staphylococcal acid phosphatase: preliminary physical and chemical characterization of the loosely bound enzyme. J Bacteriol. 1969 Mar;97(3):1215–1219. doi: 10.1128/jb.97.3.1215-1219.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. NORDLIE R. C., ARION W. J. EVIDENCE FOR THE COMMON IDENTITY OF GLUCOSE 6-PHOSPHATASE, INORGANIC PYROPHOSPHATASE, AND PYROPHOSPHATE-GLUCOSE PHOSPHOTRANSFERASE. J Biol Chem. 1964 Jun;239:1680–1685. [PubMed] [Google Scholar]
  22. Neu H. C., Heppel L. A. On the surface localization of enzymes in E. coli. Biochem Biophys Res Commun. 1964 Oct 14;17(3):215–219. doi: 10.1016/0006-291x(64)90386-9. [DOI] [PubMed] [Google Scholar]
  23. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  24. Nossal N. G., Heppel L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul 10;241(13):3055–3062. [PubMed] [Google Scholar]
  25. Pett L. B. Studies on bacterial phosphatases: The phosphatases of Aerobacter aerogenes, Alcaligenes faecalis and Bacillus subtilis. Biochem J. 1938 Mar;32(3):563–566. doi: 10.1042/bj0320563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RAMMLER D. H., GRADO C., FOWLER L. R. SULFUR METABOLISM OF AEROBACTER AEROGENES. I. A REPRESSIBLE SULFATASE. Biochemistry. 1964 Feb;3:224–230. doi: 10.1021/bi00890a014. [DOI] [PubMed] [Google Scholar]
  27. REINER J. M., TSUBOI K. K., HUDSON P. B. Acid phosphatase. IV. Fluoride inhibition of prostatic acid phosphatase. Arch Biochem Biophys. 1955 May;56(1):165–183. doi: 10.1016/0003-9861(55)90346-5. [DOI] [PubMed] [Google Scholar]
  28. ROGERS D., REITHEL F. J. Acid phosphatases of Escherichia coli. Arch Biochem Biophys. 1960 Jul;89:97–104. doi: 10.1016/0003-9861(60)90018-7. [DOI] [PubMed] [Google Scholar]
  29. Schurr A., Yagil E. Regulation and characterization of acid and alkaline phosphatase in yeast. J Gen Microbiol. 1971 Mar;65(3):291–303. doi: 10.1099/00221287-65-3-291. [DOI] [PubMed] [Google Scholar]
  30. Silver R. S., Mateles R. I. Control of mixed-substrate utilization in continuous cultures of Escherichia coli. J Bacteriol. 1969 Feb;97(2):535–543. doi: 10.1128/jb.97.2.535-543.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  32. Tanaka S., Lin E. C. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system. Proc Natl Acad Sci U S A. 1967 Apr;57(4):913–919. doi: 10.1073/pnas.57.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. VESCIA A., CHANCE E. K. Evidence for different active groups for hydrolytic and transphosphorylating activities of acid phosphatase. Biochim Biophys Acta. 1958 Nov;30(2):446–447. doi: 10.1016/0006-3002(58)90084-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES