Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Apr;127(2):387–397. doi: 10.1042/bj1270387

The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver

R L Veech 1, R Guynn 1, D Veloso 1
PMCID: PMC1178599  PMID: 4342558

Abstract

1. The time-course of the effects of ethanol administration on the metabolite concentrations, redox states and phosphorylation state was studied in the freeze-clamped liver of starved rats. The response was found to vary with the time after ethanol administration. 2. Administration of ethanol caused an immediate decrease in the [NAD+]/[NADH] ratio of both cytoplasm and mitochondria, which persisted over the 30min studied. 3. The free cytoplasmic [NADP+]/[NADPH] ratio in liver decreases immediately after ethanol administration but returns nearly to control values after 15min. 4. The cytoplasmic [ATP]/[ADP][HPO42−] ratio is elevated 15min after ethanol administration in the starved rat. 5. The rapid and large changes in most metabolite concentrations measured appeared to result from the maintenance of near-equilibrium in a wide interlinked network. 6. Differences between fed and starved rats 15min after ethanol administration were slight.

Full text

PDF
387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLANCHAER M. C. THE COMPETITIVE INHIBITION OF THE CYTOPLASMIC L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASE OF SKELETAL MUSCLE BY L-ALPHA-GLYCEROPHOSPHATE. Can J Biochem. 1965 Jan;43:17–24. doi: 10.1139/o65-002. [DOI] [PubMed] [Google Scholar]
  2. Black W. J. Kinetic studies on the mechanism of cytoplasmic L-alpha-glycerophosphate dehydrogenase of rabbit skeletal muscle. Can J Biochem. 1966 Oct;44(10):1301–1317. doi: 10.1139/o66-150. [DOI] [PubMed] [Google Scholar]
  3. Blair J. M. Magnesium, potassium, and the adenylate kinase equilibrium. Magnesium as a feedback signal from the adenine nucleotide pool. Eur J Biochem. 1970 Apr;13(2):384–390. doi: 10.1111/j.1432-1033.1970.tb00940.x. [DOI] [PubMed] [Google Scholar]
  4. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  5. EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FROSANDER O. A., RAEIHAE N., SALASPURO M., MAEENPAEAE P. INFLUENCE OF ETHANOL ON THE LIVER METABOLISM OF FED AND STARVED RATS. Biochem J. 1965 Jan;94:259–265. doi: 10.1042/bj0940259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forsander O. A., Mäenpä P. H., Salaspuro M. P. Influence of ethanol on the lactate/pyruvate and beta-hydroxybutiate/acetoacetate ratios in rat liver experiments. Acta Chem Scand. 1965;19(7):1770–1771. doi: 10.3891/acta.chem.scand.19-1770. [DOI] [PubMed] [Google Scholar]
  8. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  9. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hsu R. Y., Lardy H. A., Cleland W. W. Pigeon liver malic enzyme. V. Kinetic studies. J Biol Chem. 1967 Nov 25;242(22):5315–5322. [PubMed] [Google Scholar]
  11. KREBS H. A. The equilibrium constants of the fumarase and aconitase systems. Biochem J. 1953 Apr;54(1):78–82. doi: 10.1042/bj0540078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krebs H. A., Perkins J. R. The physiological role of liver alcohol dehydrogenase. Biochem J. 1970 Jul;118(4):635–644. doi: 10.1042/bj1180635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krebs H. A. The effects of ethanol on the metabolic activities of the liver. Adv Enzyme Regul. 1968;6:467–480. doi: 10.1016/0065-2571(68)90029-0. [DOI] [PubMed] [Google Scholar]
  14. Lieber C. S., DeCarli L. M. Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J Biol Chem. 1970 May 25;245(10):2505–2512. [PubMed] [Google Scholar]
  15. Lindros K. O. Interference of ethanol and sorbitol with hepatic ketone body metabolism in normal, hyper- and hypothyroid rats. Eur J Biochem. 1970 Mar 1;13(1):111–116. doi: 10.1111/j.1432-1033.1970.tb00905.x. [DOI] [PubMed] [Google Scholar]
  16. REBOUCAS G., ISSELBACHER K. J. Studies on the pathogenesis of the ethanol-induced fatty liver. I. Synthesis and oxidation of fatty acids by the liver. J Clin Invest. 1961 Aug;40:1355–1362. doi: 10.1172/JCI104366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rawat A. K. Effects of ethanol infusion on the redox state and metabolite levels in rat liver in vivo. Eur J Biochem. 1968 Dec 5;6(4):585–592. doi: 10.1111/j.1432-1033.1968.tb00485.x. [DOI] [PubMed] [Google Scholar]
  18. Rose I. A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1079–1086. doi: 10.1073/pnas.61.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salaspuro M. P., Mäenpä P. H. Influence of ethanol on the metabolism of perfused normal, fatty and cirrhotic rat livers. Biochem J. 1966 Sep;100(3):768–778. doi: 10.1042/bj1000768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stubbs M., Veech R. L., Krebs H. A. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem J. 1972 Jan;126(1):59–65. doi: 10.1042/bj1260059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Veech R. L., Raijman L., Dalziel K., Krebs H. A. Disequilibrium in the triose phosphate isomerase system in rat liver. Biochem J. 1969 Dec;115(4):837–842. doi: 10.1042/bj1150837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Veech R. L., Raijman L., Krebs H. A. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J. 1970 Apr;117(3):499–503. doi: 10.1042/bj1170499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  26. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williamson J. R., Scholz R., Browning E. T., Thurman R. G., Fukami M. H. Metabolic effects of ethanol in perfused rat liver. J Biol Chem. 1969 Sep 25;244(18):5044–5054. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES