Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Apr;127(2):425–435. doi: 10.1042/bj1270425

Intracellular transport of mouse kidney β-glucuronidase induced by gonadotrophin

Keitaro Kato *, Itsuyo Hirohata *, William H Fishman *, Hisao Tsukamoto *
PMCID: PMC1178603  PMID: 5076672

Abstract

1. The response of renal β-glucuronidase with time to the injection of gonadotrophin was investigated in each submicrosomal fraction of rough and smooth microsomal fractions of mouse kidney homogenate. 2. The increase in β-glucuronidase activity appeared initially in membranes of the rough microsomal fraction, 24h after injection. 3. Afterwards the newly synthesized enzyme appeared in the contents of the rough microsomal fraction and was subsequently found in the smooth microsomal fraction, reaching a maximum concentration in this fraction at 72h. 4. At this juncture, a decrease in the enzyme activity was observed in rough microsomal contents whereas the lysosomal fraction had reached its maximum value. 5. The time-course of the appearance of β-glucuronidase in the submicrosomal fractions after the gonadotrophin stimulation suggests that the newly synthesized enzyme at the site of membrane-bound ribosomes is transferred across the membrane into cisternae of the rough endoplasmic reticulum, and then is transported into lysosomes via the smooth endoplasmic reticulum. 6. The properties of microsomal and lysosomal β-glucuronidases were compared.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dallner G., Bergstrand A., Nilsson R. Heterogeneity of rough-surfaced liver microsomal membranes of adult, phenobarbital-treated, and newborn rats. J Cell Biol. 1968 Aug;38(2):257–276. doi: 10.1083/jcb.38.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
  7. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishman W. H., Goldman S. S. A postcoupling technique for beta-glucuronidase employing the substrate, naphthol AS-BI-beta-D-glucosiduronic acid. J Histochem Cytochem. 1965 Jul-Aug;13(6):441–447. doi: 10.1177/13.6.441. [DOI] [PubMed] [Google Scholar]
  9. Fishman W. H., Goldman S. S., DeLellis R. Dual localization of beta-glucuronidase in endoplasmic reticulum and in lysosomes. Nature. 1967 Feb 4;213(5075):457–460. doi: 10.1038/213457a0. [DOI] [PubMed] [Google Scholar]
  10. Glaumann H., von der Decken A., Dallner G. The heterogeneous composition of the smooth microsomal membranes in rat liver. Life Sci. 1968 Sep 1;7(17):905–911. doi: 10.1016/0024-3205(68)90095-7. [DOI] [PubMed] [Google Scholar]
  11. HAYASHI M., NAKAJIMA Y., FISHMAN W. H. THE CYTOLOGIC DEMONSTRATION OF BETA-GLUCURONIDASE EMPLOYING NAPHTHOL AS-BI GLUCURONIDE AND HEXAZONIUM PARAROSANILIN; A PRELIMINARY REPORT. J Histochem Cytochem. 1964 Apr;12:293–297. doi: 10.1177/12.4.293. [DOI] [PubMed] [Google Scholar]
  12. Ito A., Sato R. Proteolytic microdissection of smooth-surfaced vesicles of liver microsomes. J Cell Biol. 1969 Jan;40(1):179–189. doi: 10.1083/jcb.40.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kato K., Ide H., Shirahama T., Fishman W. H. Incorporation of [14C] glucosamine and [14C] leucine into mouse kidney beta-glucuronidase induced by gonadotrophin. Biochem J. 1970 Mar;117(1):161–167. doi: 10.1042/bj1170161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  16. PAIGEN K. The effect of mutation on the intracellular location of beta-glucuronidase. Exp Cell Res. 1961 Nov;25:286–301. doi: 10.1016/0014-4827(61)90280-4. [DOI] [PubMed] [Google Scholar]
  17. SHIBKO S., TAPPEL A. L. RAT-KIDNEY LYSOSOMES: ISOLATION AND PROPERTIES. Biochem J. 1965 Jun;95:731–741. doi: 10.1042/bj0950731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schnaitman C. A. Comparison of rat liver mitochondrial and microsomal membrane proteins. Proc Natl Acad Sci U S A. 1969 Jun;63(2):412–419. doi: 10.1073/pnas.63.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES