Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Mar;117(1):17–31. doi: 10.1042/bj1170017

Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth

A E Pegg 1,*, D H Lockwood 1,, H G Williams-Ashman 1,
PMCID: PMC1178826  PMID: 5420953

Abstract

1. Castration of adult rats resulted in marked decreases in the amounts of putrescine, spermidine and spermine in the ventral prostate gland. Spermidine concentrations decline rapidly over the first 11 days after androgen withdrawal, reaching a value of only 12% of normal controls. Spermine concentrations diminish more slowly, reaching 24% of normal within 11 days. The spermidine/spermine molar ratio falls from 0.9 to 0.46 under these conditions. Putrescine concentrations decrease by 70% at 7 days after castration and then remain constant for some days. 2. After daily injections of testosterone propionate to rats castrated 7 days previously, prostatic spermidine and putrescine concentrations increase significantly within 24h; normal or even greater values are observed within 8 and 4 days respectively. In contrast, the spermine concentration does not increase until 5 days after commencement of androgen treatment. 3. The activities of two enzymes involved in polyamine biosynthesis (ornithine decarboxylase and a putrescine-activated S-adenosyl-l-methionine decarboxylase system) were greatly decreased soon after castration: after 7 days the respective values were 15% of normal for ornithine decarboxylase and 7% of normal for putrescine-dependent decarboxylation of S-adenosyl-l-methionine. Injection of testosterone propionate into animals castrated 7 days previously induced a rapid increase in both enzymic activities: ornithine decarboxylase was doubled in 6h, and increased three- to four-fold within 48h, whereas the putrescine-dependent decarboxylation of S-adenosyl-l-methionine doubled in 3h and increased tenfold within 48h of commencement of daily androgen treatments. 4. The activity of these enzyme systems was very low in the ventral prostates of hypophysectomized rats and was increased by administration of testosterone in a manner similar to that found in castrated rats. 5. Alterations in the activity of two ventral-prostate enzymes involved in ornithine production (arginase) and utilization (ornithine–2-oxoglutarate transaminase) that result from changes in the androgenic status of rats are described. 6. The findings presented suggest that the activities of ornithine decarboxylase and the putrescine-dependent S-adenosyl-l-methionine decarboxylase system, rather than ornithine concentrations, are rate-limiting for the formation of putrescine and polyamines in rat ventral prostate. 7. The relation of polyamines to androgen-induced prostatic growth is discussed with particular reference to the biosynthesis of proteins and nucleic acids.

Full text

PDF
17

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham K. A. Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem. 1968 Jun;5(1):143–146. doi: 10.1111/j.1432-1033.1968.tb00348.x. [DOI] [PubMed] [Google Scholar]
  2. Ballard P. L., Williams-Ashman H. G. Isolation and properties of a testicular ribonucleic acid polymerase. J Biol Chem. 1966 Apr 10;241(7):1602–1615. [PubMed] [Google Scholar]
  3. Brasel J. A., Coffey D. S., Williams-Ashman H. G. Androgen-induced changes in the DNA polymerase activity of coagulating glands of castrated rats. Med Exp Int J Exp Med. 1968;18(4):321–326. doi: 10.1159/000137168. [DOI] [PubMed] [Google Scholar]
  4. CHINARD F. P. Photometric estimation of proline and ornithine. J Biol Chem. 1952 Nov;199(1):91–95. [PubMed] [Google Scholar]
  5. COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
  6. COLBOURN J. L., WITHERSPOON B. H., HERBST E. J. Effect of intracellular spermine on ribosomes of Escherichia coli. Biochim Biophys Acta. 1961 May 13;49:422–424. doi: 10.1016/0006-3002(61)90155-x. [DOI] [PubMed] [Google Scholar]
  7. Caldarera C. M., Barbiroli B., Moruzzi G. Polyamines and nucleic acids during development of the chick embryo. Biochem J. 1965 Oct;97(1):84–88. doi: 10.1042/bj0970084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caldarera C. M., Moruzzi M. S., Barbiroli B., Moruzzi G. Spermine and spermidine of the prostate gland of orchiectomized rats and their effect on RNA polymerase activity. Biochem Biophys Res Commun. 1968 Oct 24;33(2):266–271. doi: 10.1016/0006-291x(68)90779-1. [DOI] [PubMed] [Google Scholar]
  9. Coffey D. S., Ichinose R. R., Shimazaki J., Williams-Ashman H. G. Effects of testosterone on adenosine triphosphate and nicotinamide adenine dinucleotide levels, and on nicotinamide mononucleotide adenylytransfersee activity, in the ventral prostate of castrated rats. Mol Pharmacol. 1968 Nov;4(6):580–590. [PubMed] [Google Scholar]
  10. Coffey D. S., Shimazaki J., Williams-Ashman H. G. Polymerization of deoxyribonucleotides in relation to androgen-induced prostatic growth. Arch Biochem Biophys. 1968 Mar 20;124(1):184–198. doi: 10.1016/0003-9861(68)90319-6. [DOI] [PubMed] [Google Scholar]
  11. Cohen S. S., Hoffner N., Jansen M., Moore M., Raina A. POLYAMINES, RNA SYNTHESIS, AND STREPTOMYCIN LETHALITY IN A RELAXED MUTANT OF E. coli STRAIN 15 TAU. Proc Natl Acad Sci U S A. 1967 Mar;57(3):721–728. doi: 10.1073/pnas.57.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dykstra W. G., Jr, Herbst E. J. Spermidine in Regenerating Liver: Relation to Rapid Synthesis of Ribonucleic Acid. Science. 1965 Jul 23;149(3682):428–429. doi: 10.1126/science.149.3682.428. [DOI] [PubMed] [Google Scholar]
  13. FOX C. F., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. II. PROPERTIES OF THE DEOXYRIBONUCLEIC ACID-PRIMED REACTION WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1964 Jan;239:175–185. [PubMed] [Google Scholar]
  14. Herzfeld A., Knox W. E. The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J Biol Chem. 1968 Jun 25;243(12):3327–3332. [PubMed] [Google Scholar]
  15. Humphrey G. F., Mann T. Studies on the metabolism of semen. 5. Citric acid in semen. Biochem J. 1949;44(1):97–105. [PMC free article] [PubMed] [Google Scholar]
  16. JAENNE J., RAINA A., SIIMES M. SPERMIDINE AND SPERMINE IN RAT TISSUES AT DIFFERENT AGES. Acta Physiol Scand. 1964 Dec;62:352–358. doi: 10.1111/j.1748-1716.1964.tb10433.x. [DOI] [PubMed] [Google Scholar]
  17. Jänne J., Raina A. On the stimulation of ornithine decarboxylase and RNA polymerase activity in rat liver after treatment with growth hormone. Biochim Biophys Acta. 1969 Feb 18;174(2):769–772. doi: 10.1016/0005-2787(69)90310-4. [DOI] [PubMed] [Google Scholar]
  18. Jänne J., Raina A., Siimes M. Mechanism of stimulation of polyamine synthesis by growth hormone in rat liver. Biochim Biophys Acta. 1968 Sep 24;166(2):419–426. doi: 10.1016/0005-2787(68)90230-x. [DOI] [PubMed] [Google Scholar]
  19. KRAKOW J. S. RIBONUCLEIC ACID POLYMERASE OF AZOTOBACTER VINELANDII. III. EFFECT OF POLYAMINES. Biochim Biophys Acta. 1963 Aug 20;72:566–571. [PubMed] [Google Scholar]
  20. Kostyo J. L. Changes in polyamine content of rat liver following hypophysectomy and treatment with growth hormone. Biochem Biophys Res Commun. 1966 Apr 19;23(2):150–155. doi: 10.1016/0006-291x(66)90520-1. [DOI] [PubMed] [Google Scholar]
  21. LIAO S., WILLIAMS-ASHMAN H. G. An effect of testosterone on amino acid incorporation by prostatic ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1956–1964. doi: 10.1073/pnas.48.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Liao S., Leininger K. R., Sagher D., Barton R. W. Rapid effect of testosterone on ribonucleic acid polymerase activity of rat ventral prostate. Endocrinology. 1965 Oct;77(4):763–765. doi: 10.1210/endo-77-4-763. [DOI] [PubMed] [Google Scholar]
  24. Martin R. G., Ames B. N. THE EFFECT OF POLYAMINES AND OF POLY U SIZE ON PHENYLALANINE INCORPORATION. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2171–2178. doi: 10.1073/pnas.48.12.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moruzzi G., Barbiroli B., Caldarera C. M. Polyamines and nucleic acid metabolism in chick embryo. Incorporation of labelled precursors into nucleic acids of subcellular fractions and polyribosomal patterns. Biochem J. 1968 May;107(5):609–613. doi: 10.1042/bj1070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moulton B. C., Leonard S. L. Hormonal effects on spermidine levels in male and female reproductive organs of the rat. Endocrinology. 1969 Jun;84(6):1461–1465. doi: 10.1210/endo-84-6-1461. [DOI] [PubMed] [Google Scholar]
  27. Neish W. J., Key L. Polyamines and glutathione in livers of normal rats of different ages and in livers of pregnant rats. Biochem Pharmacol. 1968 Apr;17(4):497–502. doi: 10.1016/0006-2952(68)90264-5. [DOI] [PubMed] [Google Scholar]
  28. Neish W. J., Key L. Polyamines and glutathione in tissues of lactating rats (Rattus rattus) and in the Rd-3 adcites tumour. Comp Biochem Physiol. 1968 Dec;27(3):709–714. doi: 10.1016/0010-406x(68)90611-7. [DOI] [PubMed] [Google Scholar]
  29. Norton J. W., Erdmann V. A., Herbst E. J. Polyamine-inorganic cation interaction with ribosomes of Escherichia coli. Biochim Biophys Acta. 1968 Jan 29;155(1):293–295. doi: 10.1016/0005-2787(68)90359-6. [DOI] [PubMed] [Google Scholar]
  30. OBRINK K. J. A modified Conway unit for microdiffusion analysis. Biochem J. 1955 Jan;59(1):134–136. doi: 10.1042/bj0590134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pegg A. E. Reactivity of analogues of S-adenosylmethionine in the enzymic synthesis of spermidine by mammalian tissues. Biochim Biophys Acta. 1969 Apr 1;177(2):361–364. [PubMed] [Google Scholar]
  32. Pegg A. E., Williams-Ashman H. G. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968 Jul;108(4):533–539. doi: 10.1042/bj1080533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pegg A. E., Williams-Ashman H. G. Effects of androgens on incorporation of labeled amino acids into proteins by prostate mitochondria. Endocrinology. 1968 Mar;82(3):603–610. doi: 10.1210/endo-82-3-603. [DOI] [PubMed] [Google Scholar]
  34. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  35. Peraino C., Bunville L. G., Tahmisian T. N. Chemical, physical, and morphological properties of ornithine Aminotransferase from rat liver. J Biol Chem. 1969 May 10;244(9):2241–2249. [PubMed] [Google Scholar]
  36. RHODES J. B., WILLIAMS-ASHMAN H. G. OBSERVATIONS ON POLYAMINES IN MALE ACCESSORY GLANDS OF REPRODUCTION. Med Exp Int J Exp Med. 1964;10:281–285. doi: 10.1159/000135428. [DOI] [PubMed] [Google Scholar]
  37. Raina A., Jansen M., Cohen S. S. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. J Bacteriol. 1967 Nov;94(5):1684–1696. doi: 10.1128/jb.94.5.1684-1696.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Raina A., Jänne J., Siimes M. Stimulation of polyamine synthesis in relation to nucleic acids in regenerating rat liver. Biochim Biophys Acta. 1966 Jul 20;123(1):197–201. doi: 10.1016/0005-2787(66)90173-0. [DOI] [PubMed] [Google Scholar]
  39. Ritter C. NAD biosynthesis as an early part of androgen action. Mol Pharmacol. 1966 Mar;2(2):125–133. [PubMed] [Google Scholar]
  40. Russell D. H., Snyder S. H. Amine synthesis in regenerating rat liver: effect of hypophysectomy and growth hormone on ornithine decarboxylase. Endocrinology. 1969 Feb;84(2):223–228. doi: 10.1210/endo-84-2-223. [DOI] [PubMed] [Google Scholar]
  41. Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Räihä N. C., Kekomäki M. P. Studies on the development of ornithine-keto acid aminotransferase activity in rat liver. Biochem J. 1968 Jul;108(4):521–525. doi: 10.1042/bj1080521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. STRECKER H. J. PURIFICATION AND PROPERTIES OF RAT LIVER ORNITHINE DELTA-TRANSAMINASE. J Biol Chem. 1965 Mar;240:1225–1230. [PubMed] [Google Scholar]
  44. Silman N., Artman M., Engleberg H. Effect of magnesium and spermine on the aggregation of bacterial and mammalian ribosomes. Biochim Biophys Acta. 1965 Jun 8;103(2):231–240. doi: 10.1016/0005-2787(65)90164-4. [DOI] [PubMed] [Google Scholar]
  45. Stevens L. The binding of spermine to the ribosomes and ribosomal ribonucleic acid from Bacillus stearothermophilus. Biochem J. 1969 Jun;113(1):117–121. doi: 10.1042/bj1130117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swick R. W., Rexroth A. K., Stange J. L. The metabolism of mitochondrial proteins. 3. The dynamic state of rat liver mitochondria. J Biol Chem. 1968 Jul 10;243(13):3581–3587. [PubMed] [Google Scholar]
  47. TABOR H., TABOR C. W. SPERMIDINE, SPERMINE, AND RELATED AMINES. Pharmacol Rev. 1964 Sep;16:245–300. [PubMed] [Google Scholar]
  48. WILLIAMS-ASHMAN H. G., LIAO S., HANCOCK R. L., JURKOWITZ L., SILVERMAN D. A. TESTICULAR HORMONES AND THE SYNTHESIS OF RIBONUCLEIC ACIDS AND PROTEINS IN THE PROSTATE GLAND. Recent Prog Horm Res. 1964;20:247–301. [PubMed] [Google Scholar]
  49. Williams-Ashman H. G. New facets of the biochemistry of steroid hormone action. Cancer Res. 1965 Aug;25(7):1096–1124. [PubMed] [Google Scholar]
  50. Williams-Ashman H. G., Pegg A. E., Lockwood D. H. Mechanisms and regulation of polyamine and putrescine biosynthesis in male genital glands and other tissues of mammals. Adv Enzyme Regul. 1969;7:291–323. doi: 10.1016/0065-2571(69)90024-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES