Abstract
1. The effluxes of 42K+ and 36Cl− from isolated fat-cells from the rat were studied under a variety of conditions known to affect the metabolism of the cells. 2. 42K+ efflux from isolated fat cells was increased in a Na+-free–high-K+ medium and decreased in a K+-free medium. The existence of K+ exchange diffusion across the fat-cell membrane is suggested. 3. 36Cl− efflux from isolated fat-cells was decreased when the Cl− component of the wash medium was replaced by acetate. The basal 36Cl− efflux is suggested to be partly by Cl− exchange diffusion and partly in company with a univalent cation. 4. A variety of lipolytic stimuli, adrenaline, adrenocorticotrophic hormone, N-6,O-2′-dibutyryladenosine cyclic 3′:5′-monophosphate and theophylline, increased 42K+ efflux from isolated fat-cells. The adrenaline stimulation was biphasic; an initial, rapid and transient increase in 42K+ loss from the fat-cells was followed by a slower, more prolonged, increase in 42K+ efflux. The initial phase was inhibited by phentolamine but not by propranolol. 5. Insulin increased 42K+ efflux only after preincubation with the cells.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARAKI T., ITO M., OSCARSSON O. Anion permeability of the synaptic and non-synaptic motoneurone membrane. J Physiol. 1961 Dec;159:410–435. doi: 10.1113/jphysiol.1961.sp006818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLACK J. W., CROWTHER A. F., SHANKS R. G., SMITH L. H., DORNHORST A. C. A NEW ADRENERGIC BETARECEPTOR ANTAGONIST. Lancet. 1964 May 16;1(7342):1080–1081. doi: 10.1016/s0140-6736(64)91275-9. [DOI] [PubMed] [Google Scholar]
- Bangham A. D., Standish M. M., Watkins J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6. [DOI] [PubMed] [Google Scholar]
- Bleicher S. J., Farber L., Lewis A., Goldner M. G. Electrolyte-activated lipolysis in vitro: modifying effect of calcium. Metabolism. 1966 Aug;15(8):742–748. doi: 10.1016/s0026-0495(66)80010-0. [DOI] [PubMed] [Google Scholar]
- Burton S. D., Mondon C. E., Ishida T. Dissociation of potassium and glucose efflux in isolated perfused rat liver. Am J Physiol. 1967 Feb;212(2):261–266. doi: 10.1152/ajplegacy.1967.212.2.261. [DOI] [PubMed] [Google Scholar]
- Butcher R. W., Ho R. J., Meng H. C., Sutherland E. W. Adenosine 3',5'-monophosphate in biological materials. II. The measurement of adenosine 3',5'-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem. 1965 Nov;240(11):4515–4523. [PubMed] [Google Scholar]
- Butcher R. W., Sutherland E. W. The effects of the catecholamines, adrenergic blocking agents, prostaglandin E1, and insulin on cyclie AMP levels in the rat epididymal fat pad in vitro. Ann N Y Acad Sci. 1967 Feb 10;139(3):849–859. doi: 10.1111/j.1749-6632.1967.tb41255.x. [DOI] [PubMed] [Google Scholar]
- COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAIG A. B., Jr, HONIG C. R. HEPATIC METABOLIC AND VASCULAR RESPONSES TO EPINEPHRINE: A UNIFYING HYPOTHESIS. Am J Physiol. 1963 Dec;205:1132–1138. doi: 10.1152/ajplegacy.1963.205.6.1132. [DOI] [PubMed] [Google Scholar]
- DANIEL E. E. POTASSIUM MOVEMENTS IN RAT UTERUS STUDIED IN VITRO. I. EFFECTS OF TEMPERATURE. Can J Biochem Physiol. 1963 Oct;41:2065–2084. [PubMed] [Google Scholar]
- FINDER A. G., BOYME T., SHOEMAKER W. C. RELATIONSHIP OF HEPATIC POTASSIUM EFFLUX TO PHOSPHORYLASE ACTIVATION INDUCED BY GLUCAGON. Am J Physiol. 1964 Apr;206:738–742. doi: 10.1152/ajplegacy.1964.206.4.738. [DOI] [PubMed] [Google Scholar]
- Fain J. N. Adrenergic blockade of hormone-induced lipolysis in isolated fat cells. Ann N Y Acad Sci. 1967 Feb 10;139(3):879–890. doi: 10.1111/j.1749-6632.1967.tb41257.x. [DOI] [PubMed] [Google Scholar]
- GARLAND P. B., RANDLE P. J. A rapid enzymatic assay for glycerol. Nature. 1962 Dec 8;196:987–988. doi: 10.1038/196987a0. [DOI] [PubMed] [Google Scholar]
- Girardier L., Seydoux J., Clausen T. Membrane potential of brown adipose tissue. A suggested mechanism for the regulation of thermogenesis. J Gen Physiol. 1968 Dec;52(6):925–940. doi: 10.1085/jgp.52.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J. Anion interaction in frog muscle. J Physiol. 1958 Apr 30;141(2):351–365. doi: 10.1113/jphysiol.1958.sp005979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J., SJODIN R. A. Kinetics of exchange and net movement of frog muscle potassium. J Physiol. 1961 Feb;155:221–245. doi: 10.1113/jphysiol.1961.sp006624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. F., Kregenow F. M. The characterization of new energy dependent cation transport processes in red blood cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):566–576. doi: 10.1111/j.1749-6632.1966.tb50182.x. [DOI] [PubMed] [Google Scholar]
- Jenkinson D. H., Morton I. K. The effect of noradrenaline on the permeability of depolarized intestinal smooth muscle to inorganic ions. J Physiol. 1967 Feb;188(3):373–386. doi: 10.1113/jphysiol.1967.sp008144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkinson D. H., Morton I. K. The role of alpha- and beta- adrenergic receptors in some actions of catecholamines on intestinal smooth muscle. J Physiol. 1967 Feb;188(3):387–402. doi: 10.1113/jphysiol.1967.sp008145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LORBER V., WALKER J. L., Jr, GREENE E. A., MINARIK M. H., PAK M. J. Phasic efflux of potassium from frog ventricle. Am J Physiol. 1962 Aug;203:253–257. doi: 10.1152/ajplegacy.1962.203.2.253. [DOI] [PubMed] [Google Scholar]
- Lundholm L., Rall T., Vamos N. Influence of K-ions and adrenaline on the adenosine 3',-5'-monophosphate content in rat diaphragm. Acta Physiol Scand. 1967 May;70(1):127–128. doi: 10.1111/j.1748-1716.1967.tb03607.x. [DOI] [PubMed] [Google Scholar]
- Perry M. C., Hales C. N. Rates of effux and intracellular concentrations of potassium, sodium and chloride ions in isolated fat-cells from the rat. Biochem J. 1969 Dec;115(5):865–871. doi: 10.1042/bj1150865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Rasmussen H., Tenenhouse A. Cyclic adenosine monophosphate, CA++, and membranes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1364–1370. doi: 10.1073/pnas.59.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINEGRAD A. I., RENOLD A. E. Studies on rat adipose tissue in vitro. I. Effects of insulin on the metabolism of glucose, pyruvate, and acetate. J Biol Chem. 1958 Aug;233(2):267–272. [PubMed] [Google Scholar]