Abstract
1. Bacteria deficient in ribonuclease I were used as a source of stable ribosomal RNA. RNA was isolated from a ribosome fraction of Pseudomonas fluorescens N.C.I.B. 8248 and acetone-treated cells of Escherichia coli M.R.E. 600 by the method developed by Robinson & Wade (1968). 2. The s20,w of the 16S and 23S components can vary from 21S and 28S down to 4S depending on the RNA macro-ion concentration and the extent to which charge is suppressed by univalent Na+ and tris+ counter-ions or neutralized through the binding of bivalent Mg2+ to phosphate groups. 3. The primary charge effect in sedimentation and the frictional coefficient (which increases as the molecular conformation expands) both increase with charge and cause a decrease in s value. 4. RNA solutions heated to 80°C for 10min show minor changes in s value and a detectable increase in polydispersity. Millimolar concentrations of Mg2+ promote heat-instability and so does treatment of RNA solutions with the nuclease adsorbent macaloid, which was found to contaminate the solutions with Mg2+. 5. The stabilization of secondary structure by univalent and bivalent cations was investigated by optical methods. 6. The sedimentation properties of 30S and 50S ribosomal subunits and their constituent 16S and 23S RNA components were compared and discussed from the viewpoint of unfolding.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOEDTKER H., MOLLER W., KLEMPERER E. On the validity of the evidence for sub-units of high molecular weight ribonucleic acids. Nature. 1962 May 5;194:444–446. doi: 10.1038/194444a0. [DOI] [PubMed] [Google Scholar]
- BOGDANOVA E. S., GAVRILOVA L. P., DVOIRKIN G. A., KISELEV N. A., SPIRIN A. S. [Studies on the macromolecular structure of high polymer (ribosomal) ribonucleic acid from Escherichia coli]. Biokhimiia. 1962 May-Jun;27:387–402. [PubMed] [Google Scholar]
- BROWNHILL T. J., JONES A. S., STACEY M. The inactivation of ribonuclease during the isolation of ribonucleic acids and ribonucleoproteins from yeast. Biochem J. 1959 Nov;73:434–438. doi: 10.1042/bj0730434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush C. A., Scheraga H. A. Optical rotatory dispersion and RNA base pairing in ribosomes and in tobacco mosaic virus. Biochemistry. 1967 Oct;6(10):3036–3042. doi: 10.1021/bi00862a010. [DOI] [PubMed] [Google Scholar]
- COX R. A., LITTAUER U. Z. Ribonucleic acid from Escherichia coli. III. The influence of ionic strength and temperature on hydrodynamic and optical properties. Biochim Biophys Acta. 1962 Aug 20;61:197–208. [PubMed] [Google Scholar]
- COX R. A., LITTAUER U. Z. Secondary structure of ribonucleic acid in solution. Nature. 1959 Sep 12;184(Suppl 11):818–819. doi: 10.1038/184818a0. [DOI] [PubMed] [Google Scholar]
- Cammack K. A., Wade H. E. The sedimentation behaviour of ribonuclease-active and -inactive ribosomes from bacteria. Biochem J. 1965 Sep;96(3):671–680. doi: 10.1042/bj0960671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
- Cotter R. I., McPhie P., Gratzer W. B. Internal organization of the ribosome. Nature. 1967 Dec 2;216(5118):864–868. doi: 10.1038/216864a0. [DOI] [PubMed] [Google Scholar]
- Doty P., Boedtker H., Fresco J. R., Haselkorn R., Litt M. SECONDARY STRUCTURE IN RIBONUCLEIC ACIDS. Proc Natl Acad Sci U S A. 1959 Apr;45(4):482–499. doi: 10.1073/pnas.45.4.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EIGNER J., BOEDTKER H., MICHAELS G. The thermal degradation of nucleic acids. Biochim Biophys Acta. 1961 Jul 22;51:165–168. doi: 10.1016/0006-3002(61)91028-9. [DOI] [PubMed] [Google Scholar]
- ELSON D. A ribonucleic acid particle released from ribosomes by salt. Biochim Biophys Acta. 1961 Oct 14;53:232–234. doi: 10.1016/0006-3002(61)90818-6. [DOI] [PubMed] [Google Scholar]
- Fuwa K., Wacker W. E., Druyan R., Bartholomay A. F., Vallee B. L. NUCLEIC ACIDS AND METALS, II: TRANSITION METALS AS DETERMINANTS OF THE CONFORMATION OF RIBONUCLEIC ACIDS. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1298–1307. doi: 10.1073/pnas.46.10.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN M. H., HALL B. D. A comparison of the native and derived 30S and 50S ribosomes of Escherichia coli. Biophys J. 1961 Jul;1:517–523. doi: 10.1016/s0006-3495(61)86905-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavrilova L. P., Ivanov D. A., Spirin A. S. Studies on the structure of ribosomes. 3. Stepwise unfolding of the 50 s particles without loss of ribosomal protein. J Mol Biol. 1966 Apr;16(2):473–489. doi: 10.1016/s0022-2836(66)80186-9. [DOI] [PubMed] [Google Scholar]
- Goldberg A. Magnesium binding by Escherichia coli ribosomes. J Mol Biol. 1966 Feb;15(2):663–673. doi: 10.1016/s0022-2836(66)80134-1. [DOI] [PubMed] [Google Scholar]
- Gratzer W. B., Cowburn D. A. Optical activity of biopolymers. Nature. 1969 May 3;222(5192):426–431. doi: 10.1038/222426a0. [DOI] [PubMed] [Google Scholar]
- HUFF J. W., SASTRY K. S., GORDON M. P., WACKER W. E. THE ACTION OF METAL IONS ON TOBACCO MOSAIC VIRUS RIBONUCLEIC ACID. Biochemistry. 1964 Apr;3:501–506. doi: 10.1021/bi00892a006. [DOI] [PubMed] [Google Scholar]
- Hastings J. R., Parish J. H., Kirby K. S., Klucis E. Use of zonal centrifuge to separate components of ribosomal RNA. Natl Cancer Inst Monogr. 1966 Jun;21:397–402. [PubMed] [Google Scholar]
- Henley D. D., Lindahl T., Fresco J. R. Hydrodynamic changes accompanying the thermal denaturation of transfer ribonucleic acid. Proc Natl Acad Sci U S A. 1966 Jan;55(1):191–198. doi: 10.1073/pnas.55.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosokawa K., Fujimura R. K., Nomura M. Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc Natl Acad Sci U S A. 1966 Jan;55(1):198–204. doi: 10.1073/pnas.55.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRBY K. S. ISOLATION AND CHARACTERIZATION OF RIBOSOMAL RIBONUCLEIC ACID. Biochem J. 1965 Jul;96:266–269. doi: 10.1042/bj0960266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LITTAUER U. Z., EISENBERG H. Ribonucleic acid from Escherichia coli; preparation, characterization and physical properties. Biochim Biophys Acta. 1959 Apr;32:320–337. doi: 10.1016/0006-3002(59)90604-3. [DOI] [PubMed] [Google Scholar]
- Lerman M. I., Spirin A. S., Gavrilova L. P., Golov V. F. Studies on the structure of ribosomes. II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles. J Mol Biol. 1966 Jan;15(1):268–281. doi: 10.1016/s0022-2836(66)80226-7. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Irreversible heat inactivation of transfer ribonucleic acids. J Biol Chem. 1967 Apr 25;242(8):1970–1973. [PubMed] [Google Scholar]
- MESELSON M., NOMURA M., BRENNER S., DAVERN C., SCHLESSINGER D. CONSERVATION OF RIBOSOMES DURING BACTERIAL GROWTH. J Mol Biol. 1964 Sep;9:696–711. doi: 10.1016/s0022-2836(64)80176-5. [DOI] [PubMed] [Google Scholar]
- MIDGLEY J. E. EFFECTS OF DIFFERENT EXTRACTION PROCEDURES ON THE MOLECULAR CHARACTERISTICS OF BACTERIAL RIBOSOMAL RIBONUCLEIC ACID. Biochim Biophys Acta. 1965 Feb 8;95:232–243. doi: 10.1016/0005-2787(65)90488-0. [DOI] [PubMed] [Google Scholar]
- Marcot-Queiroz J., Monier R. Interactions between RNA's from Escherichia coli ribosomes. J Mol Biol. 1965 Dec;14(2):490–505. doi: 10.1016/s0022-2836(65)80198-x. [DOI] [PubMed] [Google Scholar]
- McIlreavy D. J., Midgley J. E. The chemical structure of bacterial ribosomal RNA. I. Terminal nucleotide sequences of Escherichia coli ribosomal RNA. Biochim Biophys Acta. 1967 Jun 20;142(1):47–64. doi: 10.1016/0005-2787(67)90514-x. [DOI] [PubMed] [Google Scholar]
- Midgley J. E. Studies on the structure of 23-S ribosomal ribonucleic acid from Escherichia coli. Biochim Biophys Acta. 1965 Nov 8;108(3):348–354. doi: 10.1016/0005-2787(65)90027-4. [DOI] [PubMed] [Google Scholar]
- Midgley J. E. The estimation of polynucleotide chain length by a chemical method. Biochim Biophys Acta. 1965 Nov 8;108(3):340–347. doi: 10.1016/0005-2787(65)90026-2. [DOI] [PubMed] [Google Scholar]
- Petermann M. L., Pavlovec A. The subunits and structural ribonucleic acids of Jensen sarcoma ribosomes. Biochim Biophys Acta. 1966 Feb 21;114(2):264–276. doi: 10.1016/0005-2787(66)90308-x. [DOI] [PubMed] [Google Scholar]
- Robinson H. K., Wade H. E. The preparation of ribosomal ribonucleic acid from whole bacteria. Biochem J. 1968 Feb;106(4):897–903. doi: 10.1042/bj1060897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAMEJIMA T., YANG J. T. OPTICAL ROTATORY DISPERSION OF DNA AND RNA. Biochemistry. 1964 May;3:613–616. doi: 10.1021/bi00893a002. [DOI] [PubMed] [Google Scholar]
- SPIRIN A. S., KISELEV N. A., SHAKULOV R. S., BOGDANOV A. A. IZUCHENIE STRUKTURY RIBOSOM; OBRATIMOE RAZVORACHIVANIE RIBOSOMNYKH CHASTITS V RIBONUKLEOPROTEIDNYE TIAZHI I MODEL' UKLADKI. Biokhimiia. 1963 Sep-Oct;28:920–930. [PubMed] [Google Scholar]
- Spahr P. F., Gesteland R. F. Specific cleavage of bacteriophage R17 RNA by an endonuclease isolated from E. coli MRE-600. Proc Natl Acad Sci U S A. 1968 Mar;59(3):876–883. doi: 10.1073/pnas.59.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin T., Meselson M. In vitro recovery o ribosomes and of synthetic activity from synthetically inactive ribosomal subunits. J Mol Biol. 1966 Mar;16(1):245–249. doi: 10.1016/s0022-2836(66)80277-2. [DOI] [PubMed] [Google Scholar]
- Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
- Szer W. Enzymatic degradation of ribosomal RNA in isolated purified ribosomes. Biochem Biophys Res Commun. 1969 Jun 6;35(5):653–658. doi: 10.1016/0006-291x(69)90454-9. [DOI] [PubMed] [Google Scholar]
- Taylor M. M., Glasgow J. E., Storck R. Sedimentation coefficients of RNA from 70S and 80S ribosomes. Proc Natl Acad Sci U S A. 1967 Jan;57(1):164–169. doi: 10.1073/pnas.57.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):777–784. doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weller D. L., Schechter Y., Musgrave D., Rougvie M., Horowitz J. Conformational changes in Escherichia coli ribosomes at low magnesium ion concentrations. Biochemistry. 1968 Oct;7(10):3668–3675. doi: 10.1021/bi00850a046. [DOI] [PubMed] [Google Scholar]
- Wolfe F. H., Oikawa K., Kay C. M. Optical rotatory dispersion and absorbance-temperature studies on wheat embryo ribosomal ribonucleates. Can J Biochem. 1968 Jul;46(7):643–653. doi: 10.1139/o68-100. [DOI] [PubMed] [Google Scholar]
- Wolfe F. H., Oikawa K., Kay C. M. Ultraviolet circular dichroism of wheat embryo ribosomal ribonucleates. Biochemistry. 1968 Oct;7(10):3361–3366. doi: 10.1021/bi00850a008. [DOI] [PubMed] [Google Scholar]