Abstract
1. Mitochondria isolated from livers of fed adult, starved adult, and embryonic rats can be separated into three distinct bands by isopycnic density centrifugation on a sucrose density gradient. The least dense band (B1) has a mean buoyant density of 1.162 and consists mainly of disrupted mitochondria. The middle band (B2) has a mean buoyant density of 1.184. The most dense band (B3) has a mean buoyant density of 1.216. B2 and B3 consist of intact mitochondria. 2. The mitochondria in B2 and B3 have very similar protein/phospholipid ratios, virtually identical phospholipid and fatty acid compositions and similar specific activities for cytochrome oxidase, malate dehydrogenase and monoamine oxidase. Both fractions have very low glucose 6-phosphatase and acid phosphatase activities. 3. As isolated, adult rat liver mitochondria have electron-dense matrices (condensed forms); some embryonic liver mitochondria are condensed, but a significant proportion have dilated matrices. All B2 mitochondria are in the condensed form. B3 mitochondria from adult rats are condensed if fixed in their equilibrium-density sucrose, but when this is diluted rapidly to 0.25m they become swollen. Some B3 mitochondria from embryonic rats are condensed, the others have dilated matrices. They all swell if rapidly diluted to 0.25m-sucrose. B2 mitochondria retain their condensed form on dilution of the sucrose. 4. It is concluded that the matrix space of B2 mitochondria is almost totally inaccessible to sucrose, but that of B3 mitochondria is readily accessible to sucrose. 5. In liver from normally fed adult rats the B2 mitochondria predominate, whereas in starved rats B2 and B3 are present in approximately equal proportions. Mitochondrial preparations from embryonic liver consist predominantly of B3 mitochondria, but the proportion of these decreases progressively as development proceeds. 6. The B2 mitochondria from livers of fed adult rats can be converted into B3 mitochondria by incubation with 10mm-succinate and 10mm-phosphate. 7. Some B2 mitochondria are converted into B3 mitochondria by exposure to high concentrations of sucrose.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
- DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWSON R. M., HEMINGTON N., DAVENPORT J. B. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses. Biochem J. 1962 Sep;84:497–501. doi: 10.1042/bj0840497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEAR A. R. SOME FEATURES OF MITOCHONDRIA AND FLUFFY LAYER IN REGENERATING RAT LIVER. Biochem J. 1965 Apr;95:118–137. doi: 10.1042/bj0950118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gear A. R. Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver. Biochem J. 1965 Nov;97(2):532–539. doi: 10.1042/bj0970532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldhor S. Protein: lipid ratios of liver mitochondria during development. J Cell Biol. 1968 Jun;37(3):823–825. doi: 10.1083/jcb.37.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasper D. K., Bronk J. R. Studies on the physiological and structural characteristics of rat intestinal mucosa. Mitochondrial structural changes during amino acid absorption. J Cell Biol. 1968 Aug;38(2):277–291. doi: 10.1083/jcb.38.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusena C. V., Depocas F. Heterogeneity and differential fragility of rat liver mitochondria. Can J Biochem. 1966 May;44(5):497–508. doi: 10.1139/o66-060. [DOI] [PubMed] [Google Scholar]
- Matile P., Bahr G. F. Biochemical and quantitative electron microscopic evidence for heterogeneity of mitochondria from Saccharomyces cerevisiae. Exp Cell Res. 1968 Oct;52(2):301–307. doi: 10.1016/0014-4827(68)90471-0. [DOI] [PubMed] [Google Scholar]
- McMurray W. C., Dawson R. M. Phospholipid exchange reactions within the liver cell. Biochem J. 1969 Mar;112(1):91–108. doi: 10.1042/bj1120091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mintz H. A., Yawn D. H., Safer B., Bresnick E., Liebelt A. G., Blailock Z. R., Rabin E. R., Schwartz A. Morphological and biochemical studies of isolated mitochondria from fetal, neonatal, and adult liver and from neoplastic tissues. J Cell Biol. 1967 Aug;34(2):513–523. doi: 10.1083/jcb.34.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pette D., Brandau H. Enzym-Histiogramme und Enzymaktivitätsmuster der Rattenleber. Nachweis Pyridinnukleotid-spezifischer Dehydrogenasen im Gelschicht-Verfahren. Enzymol Biol Clin (Basel) 1966;6(2):79–122. [PubMed] [Google Scholar]
- Pollak J. K., Shorey C. D. Changes in ultrastructure of embryonic chick liver during morphogenesis. Aust J Exp Biol Med Sci. 1967 Aug;45(4):393–406. doi: 10.1038/icb.1967.38. [DOI] [PubMed] [Google Scholar]
- Randolph M. L., Ryan R. R. A Slicer for Sampling Liquids. Science. 1950 Nov 3;112(2914):528–528. doi: 10.1126/science.112.2914.528. [DOI] [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
- WILSON J. W., LEDUC E. H. Mitochondrial changes in the liver of essential fatty acid-deficient mice. J Cell Biol. 1963 Feb;16:281–296. doi: 10.1083/jcb.16.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]




