Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Jun;118(2):319–323. doi: 10.1042/bj1180319

Dissociation of catalase. A correlation between changes in sedimentation and spectroscopic properties accompanying dissociation of bacterial catalase in alkaline solution

Peter Jones *, R H Pain , A Suggett *,†,
PMCID: PMC1179121  PMID: 5484682

Abstract

1. At high concentrations, in 10mm-phosphate buffer, pH7.0, the sedimentation coefficient of bacterial catalase varies with concentration according to: [Formula: see text] with S020,w=11.30S and ks=6.29×10−3ml mg−1. Sedimentation-equilibrium experiments yield a molecular weight of 240000. 2. Parallel studies of changes in sedimentation-velocity behaviour and in electronic spectra of bacterial catalase at pH>11 were made. Dissociation is indicated by the appearance of a slow-moving (2.9S) component in sedimentation patterns and this is accompanied by marked changes in absorption spectrum in the Soret region. Values of R=E406/E355 show a theoretically predictable near-linear dependence on α, the degree of dissociation calculated from ultracentrifuge data. 3. The Soret absorption of bacterial catalase subunits is much lower than that of the native enzyme, and it is suggested that dissociation produces an environmental constraint on the prosthetic group that results in distortion of the porphyrin ring.

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brill A. S., Williams R. J. Primary compounds of catalase and peroxidase. Biochem J. 1961 Feb;78(2):253–262. doi: 10.1042/bj0780253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown S. B., Dean T. C., Jones P. Aggregation of ferrihaems. Dimerization and protolytic equilibria of protoferrihaem and deuteroferrihaem in aqueous solution. Biochem J. 1970 May;117(4):733–739. doi: 10.1042/bj1170733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown S. B., Jones P., Lantzke I. R. Infrared evidence for an oxo-bridged (Fe-O-Fe) haemin dimer. Nature. 1969 Aug 30;223(5209):960–961. doi: 10.1038/223960a0. [DOI] [PubMed] [Google Scholar]
  4. Brown S. B., Lantzke I. R. Solution structures of ferrihaem in some dipolar aprotic solvents and their binary aqueous mixtures. Biochem J. 1969 Nov;115(2):279–285. doi: 10.1042/bj1150279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHANCE B., HERBERT D. The enzymesubstrate compounds of bacterial catalase and peroxides. Biochem J. 1950 Apr;46(4):402–414. doi: 10.1042/bj0460402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caravaca J., Dimond E. G., Sommers S. C., Wenk R. Prevention of induced atherosclerosis by peroxidase. Science. 1967 Mar 10;155(3767):1284–1287. doi: 10.1126/science.155.3767.1284. [DOI] [PubMed] [Google Scholar]
  7. Caravaca J., May M. D. The isolation and properties of an active peroxidase from hepatocatalase. Biochem Biophys Res Commun. 1964 Aug 11;16(6):528–534. doi: 10.1016/0006-291x(64)90187-1. [DOI] [PubMed] [Google Scholar]
  8. Cecil R., Ogston A. G. Examination of crystalline catalases in the ultracentrifuge. Biochem J. 1948;43(2):205–206. [PMC free article] [PubMed] [Google Scholar]
  9. Herbert D., Pinsent J. Crystalline bacterial catalase. Biochem J. 1948;43(2):193–202. doi: 10.1042/bj0430193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. INADA Y., KUROZUMI T., SHIBATA K. Peroxidase activity of hemoproteins. I. Generation of activity by acid or alkali denaturation of methemoglobin and catalase. Arch Biochem Biophys. 1961 Apr;93:30–36. doi: 10.1016/0003-9861(61)90311-3. [DOI] [PubMed] [Google Scholar]
  11. Jones P., Suggett A. The catalase-hydrogen peroxide system. A theoretical appraisal of the mechanism of catalase action. Biochem J. 1968 Dec;110(4):621–629. doi: 10.1042/bj1100621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones P., Suggett A. The catalase-hydrogen peroxide system. Role of sub-units in the thermal deactivation of bacterial catalase in the absence of substrate. Biochem J. 1968 Aug;108(5):833–838. doi: 10.1042/bj1080833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones P., Suggett A. The catalse-hydrogen peroxide system. Kinetics of catalatic action at high substrate concentrations. Biochem J. 1968 Dec;110(4):617–620. doi: 10.1042/bj1100617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MAEHLY A. C. Complexes of bacterial catalase with peroxide, azide and carbon monoxide. Biochim Biophys Acta. 1961 Nov 25;54:132–144. doi: 10.1016/0006-3002(61)90946-5. [DOI] [PubMed] [Google Scholar]
  15. SAMEJIMA T., YANG J. T. RECONSTITUTION OF ACID-DENATURED CATALASE. J Biol Chem. 1963 Oct;238:3256–3261. [PubMed] [Google Scholar]
  16. SCHUETTE H. R., STEINBRECHT I., WINDER K. [Research on bovine liver catalase. II. The dependence of enzymatic activity on tryptic and pancreatic splitting]. Hoppe Seylers Z Physiol Chem. 1960 Dec 31;322:142–146. doi: 10.1515/bchm2.1960.322.1.142. [DOI] [PubMed] [Google Scholar]
  17. Samejima T., McCabe W. J., Yang J. T. Reconstitution of alkaline-denatured catalase. Arch Biochem Biophys. 1968 Sep 20;127(1):354–360. doi: 10.1016/0003-9861(68)90236-1. [DOI] [PubMed] [Google Scholar]
  18. Sund H., Weber K., Mölbert E. Dissoziation der Rinderleber-Katalase in ihre Untereinheiten. Eur J Biochem. 1967 Jun;1(4):400–410. doi: 10.1111/j.1432-1033.1967.tb00088.x. [DOI] [PubMed] [Google Scholar]
  19. YPHANSTIS D. A. Rapid determination of molecular weights of peptides and preteins. Ann N Y Acad Sci. 1960 Aug 31;88:586–601. doi: 10.1111/j.1749-6632.1960.tb20055.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES