Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Jul;118(3):475–480. doi: 10.1042/bj1180475

The composition of β-lactamase I and β-lactamase II from Bacillus cereus 569/H

S Kuwabara 1, E P Adams 1,*, E P Abraham 1
PMCID: PMC1179215  PMID: 4990590

Abstract

1. Crystalline β-lactamase I from Bacillus cereus 569/H yielded only amino acids on acid hydrolysis, but crystalline β-lactamase II from the same organism yielded also substantial quantities of neutral sugars and amino sugars. 2. Analysis with an amino acid analyser indicated that the two enzymes were similar though not identical in overall amino acid composition. Analysis of neutral and amino sugars as their silyl derivatives by gas–liquid chromatography showed that the carbohydrate moiety of β-lactamase II contained residues of glucose, galactose, mannose, fucose, glucosamine and galactosamine. 3. After oxidation and hydrolysis both β-lactamases gave small amounts of cysteic acid. After treatment of inactive Zn2+-free β-lactamase II with N-ethylmaleimide or iodoacetate enzymic activity was not restored by the addition of Zn2+.

Full text

PDF
475

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcos J. M. Diferenciación de penicilinasas en Bacillus cereus. Rev Esp Fisiol. 1968 Sep;24(3):137–146. [PubMed] [Google Scholar]
  2. BARNER H. D., COHEN S. S. Virus-induced acquisition of metabolic function. IV. Thymidylate synthetase in thymine-requiring Escherichia coli infected by T2 and T5 bacteriophages. J Biol Chem. 1959 Nov;234:2987–2991. [PubMed] [Google Scholar]
  3. Eylar E. H. On the biological role of glycoproteins. J Theor Biol. 1966 Jan;10(1):89–113. doi: 10.1016/0022-5193(66)90179-2. [DOI] [PubMed] [Google Scholar]
  4. GUNDLACH H. G., STEIN W. H., MOORE S. The nature of the amino acid residues involved in the inactivation of ribonuclease by iodoacetate. J Biol Chem. 1959 Jul;234(7):1754–1760. [PubMed] [Google Scholar]
  5. HALL J. R., OGSTON A. G. Sedimentation and diffusion of samples of penicillinase. Biochem J. 1956 Mar;62(3):401–403. [PubMed] [Google Scholar]
  6. Holbrook J. J., Jeckel R. A peptide containing a reactive lysyl group from ox liver glutamate dehydrogenase. Biochem J. 1969 Mar;111(5):689–694. doi: 10.1042/bj1110689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holiday E. R. Spectrophotometry of proteins: Absorption spectra of tyrosine, tryptophan and their mixtures. II. Estimation of tyrosine and tryptophan in proteins. Biochem J. 1936 Oct;30(10):1795–1803. doi: 10.1042/bj0301795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuwabara S. Purification and properties of two extracellular beta-lactamases from Bacillus cereus 569-H. Biochem J. 1970 Jul;118(3):457–465. doi: 10.1042/bj1180457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lipscomb W. N., Hartsuck J. A., Reeke G. N., Jr, Quiocho F. A., Bethge P. H., Ludwig M. L., Steitz T. A., Muirhead H., Coppola J. C. The structure of carboxypeptidase A. VII. The 2.0-angstrom resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp Biol. 1968 Jun;21(1):24–90. [PubMed] [Google Scholar]
  11. NOLTMANN E. A., MAHOWALD T. A., KUBY S. A. Studies on adenosine triphosphate transphosphorylases. II. Amino acid composition of adenosine triphosphate-creatine transphosphorylase. J Biol Chem. 1962 Apr;237:1146–1154. [PubMed] [Google Scholar]
  12. PLUMMER T. H., Jr, HIRS C. H. The isolation of ribounclease B, a glycoprotein, from bovine pancreatic juice. J Biol Chem. 1963 Apr;238:1396–1401. [PubMed] [Google Scholar]
  13. Partridge S. M. Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J. 1948;42(2):238–250. doi: 10.1042/bj0420238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pollock M. R. The range and significance of variations amongst bacterial penicillinases. Ann N Y Acad Sci. 1968 Jun 14;151(1):502–515. doi: 10.1111/j.1749-6632.1968.tb11910.x. [DOI] [PubMed] [Google Scholar]
  15. Proceedings of the biochemical society. Biochem J. 1966 Jan;98(1):1–16P. [PMC free article] [PubMed] [Google Scholar]
  16. Reeke G. N., Hartsuck J. A., Ludwig M. L., Quiocho F. A., Steitz T. A., Lipscomb W. N. The structure of carboxypeptidase a, vi. Some results at 2.0-a resolution, and the complex with glycyl-tyrosine at 2.8-a resolution. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2220–2226. doi: 10.1073/pnas.58.6.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SCHRAM E., MOORE S., BIGWOOD E. J. Chromatographic determination of cystine as cysteic acid. Biochem J. 1954 May;57(1):33–37. doi: 10.1042/bj0570033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sabath L. D., Abraham E. P. Cephalosporinase and penicillinase activity of Bacillus cereus. Antimicrob Agents Chemother (Bethesda) 1965;5:392–397. [PubMed] [Google Scholar]
  19. Sabath L. D., Finland M. Thiol-group binding of zinc to a beta-lactamase of Bacillus cereus: differential effects on enzyme activity with penicillin and cephalosporins as substrates. J Bacteriol. 1968 May;95(5):1513–1519. doi: 10.1128/jb.95.5.1513-1519.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smyth D. G., Blumenfeld O. O., Konigsberg W. Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J. 1964 Jun;91(3):589–595. doi: 10.1042/bj0910589. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES