Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Jul;118(3):497–503. doi: 10.1042/bj1180497

The mechanism of uptake of cobalt ions by Neurospora crassa

G Venkateswerlu 1, K Sivarama Sastry 1
PMCID: PMC1179218  PMID: 5472176

Abstract

Uptake of Co2+ by 3-day-old mycelia of Neurospora crassa involves cell-surface binding as well as transport into the intracellular space. The surface binding is rapid and accounts for 30–40% of the total Co2+ uptake. Transport of Co2+ occurs at a rate of 40μg/h per 100mg dry wt. Surface binding and overall uptake show different temperature dependence. Metabolic inhibitors such as azide, dinitrophenol and fluoride depress transport of Co2+. The overall uptake of Co2+ exhibits a high Km value and hence the concentration mechanism is one of low `affinity' for the metal. The uptake of Co2+ varies linearly with pH in the range pH3 to pH6. Mg2+ inhibits both surface binding and transport of Co2+. It is suggested that the system that transports Mg2+ is also involved in Co2+ uptake by N. crassa.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELSON P. H., ALDOUS E. Ion antagonisms in microorganisms; interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. J Bacteriol. 1950 Oct;60(4):401–413. doi: 10.1128/jb.60.4.401-413.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson-Kottö I., Hevesy G. C. Zinc uptake by Neurospora. Biochem J. 1949;44(4):407–409. [PMC free article] [PubMed] [Google Scholar]
  3. BALLENTINE R., STEPHENS D. G. The biosynthesis of stable cobalt proteins by plants. J Cell Physiol. 1951 Jun;37(3):369–387. doi: 10.1002/jcp.1030370303. [DOI] [PubMed] [Google Scholar]
  4. Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
  5. CHIRIGOS M. A., GREENGARD P., UDENFRIEND S. Uptake of tyrosine by rat brain in vivo. J Biol Chem. 1960 Jul;235:2075–2079. [PubMed] [Google Scholar]
  6. GILBERT J. C. MECHANISM OF SUGAR TRANSPORT IN BRAIN SLICES. Nature. 1965 Jan 2;205:87–88. doi: 10.1038/205087a0. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Padmanaban G., Sarma P. S. Cobalt toxicity and iron metabolism in Neurospora crassa. Biochem J. 1966 Jan;98(1):330–334. doi: 10.1042/bj0980330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SASTRY K. S., ADIGA P. R., VENKATASUBRAMANYAM V., SARMA P. S. Interrelationships in trace-element metabolism in metal toxicities in Neurospora crassa. Biochem J. 1962 Dec;85:486–491. doi: 10.1042/bj0850486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
  11. TISSIERES A., MITCHELL H. K., HASKINS F. A. Studies on the respiratory system of the poky strain of Neurospora. J Biol Chem. 1953 Nov;205(1):423–433. [PubMed] [Google Scholar]
  12. ZALOKAR M. Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys. 1954 May;50(1):71–80. doi: 10.1016/0003-9861(54)90010-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES