Full text
PDF![129-b2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/2715374c1cf7/biochemj00671-0011.png)
![129](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/0c1eff123ba3/biochemj00671-0012.png)
![130](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/a51e8fa116a5/biochemj00671-0013.png)
![131](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/f91ce04fc884/biochemj00671-0014.png)
![132](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/554c5415d751/biochemj00671-0015.png)
![133](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/9ffcb8a93d1f/biochemj00671-0016.png)
![134](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/4e2ff596c5b3/biochemj00671-0017.png)
![135](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/e3d92df9d9a9/biochemj00671-0018.png)
![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/734c91659586/biochemj00671-0019.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/4ffac8782413/biochemj00671-0020.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d58/1179333/1205e13a2072/biochemj00671-0021.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addanki S., Cahill F. D., Sotos J. F. Passive transport of 5,5-dimethyl-2, 4-oxazolidinedione into beef heart mitochondria. Science. 1967 Mar 31;155(3770):1678–1679. doi: 10.1126/science.155.3770.1678. [DOI] [PubMed] [Google Scholar]
- BRIERLEY G. P., BACHMANN E., GREEN D. E. Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1928–1935. doi: 10.1073/pnas.48.11.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom S., Cancilla P. A. Myocytolysis and mitochondrial calcification in rat myocardium after low doses of isoproterenol. Am J Pathol. 1969 Mar;54(3):373–391. [PMC free article] [PubMed] [Google Scholar]
- CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
- CAULFIELD J. B., SCHRAG P. E. ELECTRON MICROSCOPIC STUDY OF RENAL CALCIFICATION. Am J Pathol. 1964 Mar;44:365–381. [PMC free article] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- CHAPPELL J. B., CROFTS A. R. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING. Biochem J. 1965 May;95:378–386. doi: 10.1042/bj0950378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E., Balcavage W. X., Lehninger A. L., Mattoon J. R. Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta. 1970 Apr 7;205(1):18–26. doi: 10.1016/0005-2728(70)90057-5. [DOI] [PubMed] [Google Scholar]
- Carafoli E., Gamble R. L., Lehninger A. L. Rebounds and oscillations in respiration-linked movements of Ca++ and H+ in rat liver mitochondria. J Biol Chem. 1966 Jun 10;241(11):2644–2652. [PubMed] [Google Scholar]
- Carafoli E., Gamble R. L., Rossi C. S., Lehninger A. L. Super-stoichiometric ratios between ion movements and electron transport in rat liver mitochondria. J Biol Chem. 1967 Mar 25;242(6):1199–1204. [PubMed] [Google Scholar]
- Chance B., Azzi A. The response of reduced pyridine nucleotide to calcium-induced alkalinity. Ann N Y Acad Sci. 1969 Oct 31;147(19):805–811. doi: 10.1111/j.1749-6632.1969.tb41287.x. [DOI] [PubMed] [Google Scholar]
- Chance B., Mela L. Hydrogen ion concentration changes in mitochondrial membranes. J Biol Chem. 1966 Oct 25;241(20):4588–4599. [PubMed] [Google Scholar]
- Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
- DELUCA H. F., ENGSTROM G. W. Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1744–1750. doi: 10.1073/pnas.47.11.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
- ENGSTROM G. W., DELUCA H. F. THE NATURE OF CA++ BINDING BY KIDNEY MITOCHONDRIA. Biochemistry. 1964 Mar;3:379–383. doi: 10.1021/bi00891a013. [DOI] [PubMed] [Google Scholar]
- GONZALES F., KARNOVSKY M. J. Electron microscopy of osteoclasts in healing fracturees of rat bone. J Biophys Biochem Cytol. 1961 Feb;9:299–316. doi: 10.1083/jcb.9.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenawalt J. W., Carafoli E. Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J Cell Biol. 1966 Apr;29(1):37–61. doi: 10.1083/jcb.29.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R., Caplan A. I. Ion-induced ultrastructural transformations in isolated mitochondria. The energized uptake of calcium. J Cell Biol. 1969 Jul;42(1):221–234. doi: 10.1083/jcb.42.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halstead L. B. Are mitochondria directly involved in biological mineralisation? The mitochondrion and the origin of bone. Calcif Tissue Res. 1969;3(1):103–105. doi: 10.1007/BF02058652. [DOI] [PubMed] [Google Scholar]
- Hohman W., Schraer H. The intracellular distribution of calcium in the mucosa of the avian shell gland. J Cell Biol. 1966 Aug;30(2):317–331. doi: 10.1083/jcb.30.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J. E., Thomas W. C., Jr, Barker L. M., Smith L. H., Wadkins C. L. The recognition and isolation from urine and serum of a peptide inhibitor to calcification. Johns Hopkins Med J. 1967 Mar;120(3):119–136. [PubMed] [Google Scholar]
- Jones A. R. Calcium and phosphorus accumulation in Spirostomum ambiguum. J Protozool. 1967 May;14(2):220–225. doi: 10.1111/j.1550-7408.1967.tb01987.x. [DOI] [PubMed] [Google Scholar]
- Kenefick D. G., Hanson J. B. Contracted state as an energy source for ca binding and ca + inorganic phosphate accumulation by corn mitochondria. Plant Physiol. 1966 Dec;41(10):1601–1609. doi: 10.1104/pp.41.10.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEHNINGER A. L., ROSSI C. S., GREENAWALT J. W. Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun. 1963 Mar 25;10:444–448. doi: 10.1016/0006-291x(63)90377-2. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Acid-base changes in mitochondria and medium during energy-dependent and energy-independent binding of Ca++. Ann N Y Acad Sci. 1969 Oct 31;147(19):816–823. doi: 10.1111/j.1749-6632.1969.tb41289.x. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Martin J. H., Matthews J. L. Mitochondrial granules in chondrocytes. Calcif Tissue Res. 1969;3(2):184–193. doi: 10.1007/BF02058661. [DOI] [PubMed] [Google Scholar]
- Massari S., Azzone G. F. The mechanism of ion translocation in mitochondria. 2. Active transport and proton pump. Eur J Biochem. 1970 Feb;12(2):310–318. doi: 10.1111/j.1432-1033.1970.tb00852.x. [DOI] [PubMed] [Google Scholar]
- Mela L., Chance B. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry. 1968 Nov;7(11):4059–4063. doi: 10.1021/bi00851a038. [DOI] [PubMed] [Google Scholar]
- Pasquali-Ronchetti I., Greenawalt J. W., Carafoli E. On the nature of the dense matrix granules of normal mitochondria. J Cell Biol. 1969 Feb;40(2):565–568. doi: 10.1083/jcb.40.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patriarca P., Carafoli E. A comparative study of the intracellular divalent Ca movements in white and red muscle. Experientia. 1969 Jun 15;25(6):598–599. doi: 10.1007/BF01896534. [DOI] [PubMed] [Google Scholar]
- Posner A. S. Crystal chemistry of bone mineral. Physiol Rev. 1969 Oct;49(4):760–792. doi: 10.1152/physrev.1969.49.4.760. [DOI] [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
- Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds E. S. Liver parenchymal cell injury. 3. The nature of calcium--associated electron-opaque masses in rat liver mitochondria following poisoning with carbon tetrachloride. J Cell Biol. 1965 Jun;25(3 Suppl):53–75. doi: 10.1083/jcb.25.3.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi C. S., Bielawski J., Lehninger A. L. Separation of H+ and OH- in the extramitochondrial and mitochondrial phases during Ca++-activated electron transport. J Biol Chem. 1966 Apr 25;241(8):1919–1921. [PubMed] [Google Scholar]
- SCARPELLI D. G. EXPERIMENTAL NEPHROCALCINOSIS. A BIOCHEMICAL AND MORPHOLOGIC STUDY. Lab Invest. 1965 Feb;14:123–141. [PubMed] [Google Scholar]
- SLATER E. C., CLELAND K. W. The effect of calcium on the respiratory and phosphorylative activities of heart-muscle sarcosomes. Biochem J. 1953 Nov;55(4):566–590. doi: 10.1042/bj0550566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro I. M., Greenspan J. S. Are mitochondria directly involved in biological mineralisation? Calcif Tissue Res. 1969;3(1):100–102. doi: 10.1007/BF02058651. [DOI] [PubMed] [Google Scholar]
- Thomas R. S., Greenawalt J. W. Microincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J Cell Biol. 1968 Oct;39(1):55–76. doi: 10.1083/jcb.39.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]
- Wasserman R. H., Corradino R. A., Taylor A. N. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem. 1968 Jul 25;243(14):3978–3986. [PubMed] [Google Scholar]
- ZACKS S. I., SHEFF M. F. STUDIES ON TETANUS TOXIN. I. FORMATION OF INTRAMITOCHONDRIAL DENSE GRANULES IN MICE ACUTELY POISONED WITH TETANUS TOXIN. J Neuropathol Exp Neurol. 1964 Apr;23:306–323. [PubMed] [Google Scholar]