Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Sep;119(2):221–242. doi: 10.1042/bj1190221

The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions

E D Saggerson 1, A L Greenbaum 1
PMCID: PMC1179344  PMID: 4249859

Abstract

1. Epididymal adipose tissues obtained from rats that had been previously starved, starved and refed a high fat diet for 72h, starved and refed bread for 144h or fed a normal diet were incubated in the presence of insulin+glucose or insulin+glucose+acetate. 2. Measurements were made of the whole-tissue concentrations of hexose phosphates, triose phosphates, glycerol 1-phosphate, 3-phosphoglycerate, 6-phosphogluconate, adenine nucleotides, acid-soluble CoA, long-chain fatty acyl-CoA, malate and citrate after 1h of incubation. The release of lactate, pyruvate and glycerol into the incubation medium during this period was also determined. 3. The rates of metabolism of glucose in the hexose monophosphate pathway, the glycolytic pathway, the citric acid cycle and into glyceride glycerol, fatty acids and lactate+pyruvate were also determined over a 2h period in similarly treated tissues. The metabolism of acetate to CO2 and fatty acids in the presence of glucose was also measured. 4. The activities of acetyl-CoA carboxylase, fatty acid synthetase and isocitrate dehydrogenase were determined in adipose tissues from starved, starved and fat-refed, and alloxan-diabetic animals and also in tissues from animals that had been starved and refed bread for up to 96h. Changes in these activities were compared with the ability of similar tissues to incorporate [14C]glucose into fatty acids in vitro. 5. The activities of acetyl-CoA carboxylase and fatty acid synthetase roughly paralleled the ability of tissues to incorporate glucose into fatty acids. 6. Rates of triglyceride synthesis and fatty acid synthesis could not be correlated with tissue concentrations of long-chain fatty acyl-CoA, citrate or glycerol 1-phosphate. In some cases changes in phosphofructokinase flux rates could be correlated with changes in citrate concentration. 7. The main lesion in fatty acid synthesis in tissues from starved, starved and fat-refed, and alloxan-diabetic rats appeared to reside at the level of pyruvate utilization and to be related to the rate of endogenous lipolysis. 8. It is suggested that pyruvate utilization by the tissue may be regulated by the metabolism of fatty acids within the tissue. The significance of this in directing glucose utilization away from fatty acid synthesis and into glyceride-glycerol synthesis is discussed.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aas M., Bremer J. Short-chain fatty acid activation in rat liver. A new assay procedure for the enzymes and studies on their intracellular localization. Biochim Biophys Acta. 1968 Oct 22;164(2):157–166. doi: 10.1016/0005-2760(68)90142-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson J., Hollifield G. The effects of starvation and refeeding on hexosemonophosphate shunt enzyme activity and DNA, RNA, and nitrogen content of rat adipose tissue. Metabolism. 1966 Dec;15(12):1098–1103. doi: 10.1016/0026-0495(66)90099-0. [DOI] [PubMed] [Google Scholar]
  3. BALLY P. R., CAHILL G. F., Jr, LEBOEUF B., RENOLD A. E. Studies on rat adipose tissue in vitro. V. Effects of glucose and insulin on the metabolism of palmitate-1-C14. J Biol Chem. 1960 Feb;235:333–336. [PubMed] [Google Scholar]
  4. BORTZ W., ABRAHAM S., CHAIKOFF I. L. Localization of the block in lipogenesis resulting from feeding fat. J Biol Chem. 1963 Apr;238:1266–1272. [PubMed] [Google Scholar]
  5. BUCKLE R. M. Mobilization of free fatty acids from adipose tissue from normal and diabetic subjects. Influence of glucose and insulin. Diabetes. 1963 Mar-Apr;12:133–140. doi: 10.2337/diab.12.2.133. [DOI] [PubMed] [Google Scholar]
  6. Ballard F. J., Hanson R. W. Measurement of adipose-tissue metabolites in vivo. Biochem J. 1969 Apr;112(2):195–202. doi: 10.1042/bj1120195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borrebaek B. Increase in epididymal adipose tissue hexokinase activity induced by glucose and insulin. Biochim Biophys Acta. 1966 Oct 17;128(1):211–213. doi: 10.1016/0926-6593(66)90165-2. [DOI] [PubMed] [Google Scholar]
  8. Bremer J. The effect of acylcarnitines on the metabolism of pyruvate in rat-heart mitochondria. Biochim Biophys Acta. 1965 Jul 8;104(2):581–590. doi: 10.1016/0304-4165(65)90364-8. [DOI] [PubMed] [Google Scholar]
  9. Brown J., McLean P. Effect of alloxan-diabetes on the activity of citrate cleavage enzyme in adipose tissue. Nature. 1965 Jul 24;207(995):407–408. doi: 10.1038/207407a0. [DOI] [PubMed] [Google Scholar]
  10. CAHILL G. F., Jr, LEBOEUF B., FLINN R. B. Studies on rat adipose tissue in vitro. VI. Effect of epinephrine on glucose metabolism. J Biol Chem. 1960 May;235:1246–1250. [PubMed] [Google Scholar]
  11. CROFFORD O. B., RENOLD A. E. GLUCOSE UPTAKE BY INCUBATED RAT EPIDIDYMAL ADIPOSE TISSUE. RATE-LIMITING STEPS AND SITE OF INSULIN ACTION. J Biol Chem. 1965 Jan;240:14–21. [PubMed] [Google Scholar]
  12. DOLE V. P. The fatty acid pool in adipose tissue. J Biol Chem. 1961 Dec;236:3121–3124. [PubMed] [Google Scholar]
  13. Dakshinamurti K., Desjardins P. R. Acetyl-CoA carboxylase from rat adipose tissue. Biochim Biophys Acta. 1969 Mar 4;176(2):221–229. doi: 10.1016/0005-2760(69)90181-7. [DOI] [PubMed] [Google Scholar]
  14. Denton R. M., Halperin M. L. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and L-glycerol 3-phosphate. Biochem J. 1968 Nov;110(1):27–38. doi: 10.1042/bj1100027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Denton R. M., Randle P. J. Citrate and the regulation of adipose-tissue phosphofructokinase. Biochem J. 1966 Aug;100(2):420–423. doi: 10.1042/bj1000420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Denton R. M., Randle P. J. Measurement of flow of carbon atoms from glucose and glycogen glucose to glyceride glycerol and glycerol in rat heart and epididymal adipose tissue. Effects of insulin, adrenaline and alloxan-diabetes. Biochem J. 1967 Aug;104(2):423–434. doi: 10.1042/bj1040423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Denton R. M., Yorke R. E., Randle P. J. Measurement of concentrations of metabolites in adipose tissue and effects of insulin, alloxan-diabetes and adrenaline. Biochem J. 1966 Aug;100(2):407–419. doi: 10.1042/bj1000407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Evans J. R., Opie L. H., Renold A. E. Pyruvate metabolism in the perfused rat heart. Am J Physiol. 1963 Nov;205(5):971–976. doi: 10.1152/ajplegacy.1963.205.5.971. [DOI] [PubMed] [Google Scholar]
  19. FLATT J. P., BALL E. G. STUDIES ON THE METABOLISM OF ADIPOSE TISSUE. XV. AN EVALUATION OF THE MAJOR PATHWAYS OF GLUCOSE CATABOLISM AS INFLUENCED BY INSULIN AND EPINEPHRINE. J Biol Chem. 1964 Mar;239:675–685. [PubMed] [Google Scholar]
  20. Fang M., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. The regulation of fatty acid synthesis by rat liver extracts. Biochem J. 1967 Nov;105(2):803–811. doi: 10.1042/bj1050803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Flatt J. P., Ball E. G. Studies on the metabolism of adipose tissue. XIX. An evaluation of the major pathways of glucose catabolism as influenced by acetate in the presence of insulin. J Biol Chem. 1966 Jun 25;241(12):2862–2869. [PubMed] [Google Scholar]
  22. GIBSON D. M., HUBBARD D. D. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun. 1960 Nov;3:531–535. doi: 10.1016/0006-291x(60)90169-8. [DOI] [PubMed] [Google Scholar]
  23. Gregolin C., Ryder E., Warner R. C., Kleinschmidt A. K., Lane M. D. Liver acetyl coa carboxylase: the dissociation-reassociation process and its relation to catalytic activity. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1751–1758. doi: 10.1073/pnas.56.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grossbard L., Schimke R. T. Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem. 1966 Aug 10;241(15):3546–3560. [PubMed] [Google Scholar]
  25. HAFT D. E. EVIDENCE FOR INHIBITION OF ACETYL-COENZYME A FORMATION FROM PYRUVATE IN DIABETIC RAT LIVER. Biochim Biophys Acta. 1964 Jul 15;90:173–175. doi: 10.1016/0304-4165(64)90133-3. [DOI] [PubMed] [Google Scholar]
  26. HAUSBERGER F. X., MILSTEIN S. W. Dietary effect on lipogenesis in adipose tissue. J Biol Chem. 1955 May;214(1):483–488. [PubMed] [Google Scholar]
  27. HAUSBERGER F. X., MILSTEIN S. W., RUTMAN R. J. The influence of insulin on glucose utilization in adipose and hepatic tissues in vitro. J Biol Chem. 1954 May;208(1):431–438. [PubMed] [Google Scholar]
  28. HOHORST H. J., KREUTZ F. H., REIM M. Steady state equilibria of some DPN-linked reactions and the oxidation/reduction state of the DPN/DPNH system in the cytoplasmatic compartment of liver cells in vivo. Biochem Biophys Res Commun. 1961 Mar 10;4:159–162. doi: 10.1016/0006-291x(61)90262-5. [DOI] [PubMed] [Google Scholar]
  29. HORNING M. G., MARTIN D. B., KARMEN A., VAGELOS P. R. Fatty acid synthesis in adipose tissue. II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. J Biol Chem. 1961 Mar;236:669–672. [PubMed] [Google Scholar]
  30. HOWARD C. F., LOWENSTEIN J. M. THE EFFECT OF ALPH-GLYCEROPHOSPHATE ON THE MICROSOMAL STIMULATION OF FATTY ACID SYNTHESIS. Biochim Biophys Acta. 1964 Apr 20;84:226–228. doi: 10.1016/0926-6542(64)90089-7. [DOI] [PubMed] [Google Scholar]
  31. Halperin M. L., Denton R. M. Regulation of glycolysis and L-glycerol 3-phosphate concentration in rat epididymal adipose tissue in vitro. Role of phosphofructokinase. Biochem J. 1969 Jun;113(1):207–214. doi: 10.1042/bj1130207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hansen H. G., Henning U. Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta. 1966 Aug 10;122(2):355–358. doi: 10.1016/0926-6593(66)90076-2. [DOI] [PubMed] [Google Scholar]
  33. Herbert D., Gordon H., Subrahmanyan V., Green D. E. Zymohexase: With an Addendum by E. C. Bate-Smith. Biochem J. 1940 Jul;34(7):1108–1123. doi: 10.1042/bj0341108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Howard C. F., Jr, Lowenstein J. M. The effect of glycerol 3-phosphate on fatty acid synthesis. J Biol Chem. 1965 Nov;240(11):4170–4175. [PubMed] [Google Scholar]
  35. JEANRENAUD B., RENOLD A. E. Studies on rat adipose tissue in vitro. 7. Effects of adrenal cortical hormones. J Biol Chem. 1960 Aug;235:2217–2223. [PubMed] [Google Scholar]
  36. Jomain M., Hanson R. W. Dietary protein and the control of fatty acid synthesis in rat adipose tissue. J Lipid Res. 1969 Nov;10(6):674–680. [PubMed] [Google Scholar]
  37. KORCHAK H. M., MASORO E. J. Changes in the level of the fatty acid synthesizing enzymes during starvation. Biochim Biophys Acta. 1962 Apr 9;58:354–356. doi: 10.1016/0006-3002(62)91022-3. [DOI] [PubMed] [Google Scholar]
  38. KORCHAK H. M., MASORO E. J. FREE FATTY ACIDS AS LIPOGENIC INHIBITORS. Biochim Biophys Acta. 1964 Dec 2;84:750–753. doi: 10.1016/0926-6542(64)90034-4. [DOI] [PubMed] [Google Scholar]
  39. KORCHAK H. M., MASORO E. J. INHIBITORY MECHANISMS IN THE CONTROL OF LIPOGENESIS. Biochim Biophys Acta. 1963 Dec 27;70:647–657. doi: 10.1016/0006-3002(63)90809-6. [DOI] [PubMed] [Google Scholar]
  40. KREBS H. A., KORNBERG H. L., BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed] [Google Scholar]
  41. Katz J., Landau B. R., Bartsch G. E. The pentose cycle, triose phosphate isomerization, and lipogenesis in rat adipose tissue. J Biol Chem. 1966 Feb 10;241(3):727–740. [PubMed] [Google Scholar]
  42. Katzen H. M. The effect of diabetes and insulin in vivo and in vitro on a low Km form of hexokinase from various rat tissues. Biochem Biophys Res Commun. 1966 Aug 23;24(4):531–536. doi: 10.1016/0006-291x(66)90352-4. [DOI] [PubMed] [Google Scholar]
  43. Kornacker M. S., Ball E. G. Citrate cleavage in adipose tissue. Proc Natl Acad Sci U S A. 1965 Sep;54(3):899–904. doi: 10.1073/pnas.54.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. LOWRY O. H., PASSONNEAU J. V. THE RELATIONSHIPS BETWEEN SUBSTRATES AND ENZYMES OF GLYCOLYSIS IN BRAIN. J Biol Chem. 1964 Jan;239:31–42. [PubMed] [Google Scholar]
  45. Leveille G. A., Hanson R. W. Adaptive changes in enzyme activity and metabolic pathways in adipose tissue from meal-fed rats. J Lipid Res. 1966 Jan;7(1):46–55. [PubMed] [Google Scholar]
  46. Leveille G. A. The reversal of glycolysis in rat epididymal adipose tissue. Life Sci. 1967 Apr 15;6(8):803–808. doi: 10.1016/0024-3205(67)90282-2. [DOI] [PubMed] [Google Scholar]
  47. MARTIN D. B., HORNING M. G., VAGELOS P. R. Fatty acid synthesis in adipose tissue. I. Purification and properties of a long chain fatty acid-synthesizing system. J Biol Chem. 1961 Mar;236:663–668. [PubMed] [Google Scholar]
  48. MARTIN D. B., VAGELOS P. R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem. 1962 Jun;237:1787–1792. [PubMed] [Google Scholar]
  49. MASORO E. J., KORCHAK H. M., PORTER E. A study of the lipogenic inhibitory mechanisms induced by fasting. Biochim Biophys Acta. 1962 Apr 23;58:407–416. doi: 10.1016/0006-3002(62)90051-3. [DOI] [PubMed] [Google Scholar]
  50. MILSTEIN S. W., DRISCOLL L. H. Oxidation of albumin-bound palmitate-1-C14 by adipose and hepatic tissues of the rat. J Biol Chem. 1959 Jan;234(1):19–21. [PubMed] [Google Scholar]
  51. Margolis S. A., Baum H. The association of acetyl-coenzyme A carboxylase with the microsomal fraction of pigeon liver. Arch Biochem Biophys. 1966 Jun;114(3):445–451. doi: 10.1016/0003-9861(66)90366-3. [DOI] [PubMed] [Google Scholar]
  52. Martin D. B., Pittman J. G. Stimulation of fatty acid biosynthesis by preincubation with mitochondria. Biochim Biophys Acta. 1966 Apr 4;116(2):214–219. doi: 10.1016/0005-2760(66)90004-x. [DOI] [PubMed] [Google Scholar]
  53. McLean P., Brown J., Greenslade K., Brew K. Effect of alloxan-diabetes on the glucose-ATP phosphotransferase activity of adipose tissue. Biochem Biophys Res Commun. 1966 Apr 19;23(2):117–121. doi: 10.1016/0006-291x(66)90514-6. [DOI] [PubMed] [Google Scholar]
  54. Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. II. Free energy changes and rate limitings steps in erythrocyte glycolysis. J Biochem. 1966 Feb;59(2):139–144. doi: 10.1093/oxfordjournals.jbchem.a128274. [DOI] [PubMed] [Google Scholar]
  55. NUMA S., MATSUHASHI M., LYNEN F. [On disorders of fatty acid synthesis in hunger and alloxan diabetes. I. Fatty acid synthesis in the liver of normal and fasting rats]. Biochem Z. 1961;334:203–217. [PubMed] [Google Scholar]
  56. Nicholls D. G., Shepherd D., Garland P. B. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Biochem J. 1967 Jun;103(3):677–691. doi: 10.1042/bj1030677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. ORTH R. D., ODELL W. D., WILLIAMS R. H. Some hormonal effects on the metabolism of acetate-1-C14 by rat adipose tissue. Am J Physiol. 1960 Mar;198:640–644. doi: 10.1152/ajplegacy.1960.198.3.640. [DOI] [PubMed] [Google Scholar]
  58. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  59. RESHEF L., SHAFRIR E., SHAPIRO B. In vitro release of unesterified fatty acids by adipose tissue. Metabolism. 1958 Nov;7(6):723–730. [PubMed] [Google Scholar]
  60. Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rognstad R., Katz J. The balance of pyridine nucleotides and ATP in adipose tissue. Proc Natl Acad Sci U S A. 1966 May;55(5):1148–1156. doi: 10.1073/pnas.55.5.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rolleston F. S., Newsholme E. A. Control of glycolysis in cerebral cortex slices. Biochem J. 1967 Aug;104(2):524–533. doi: 10.1042/bj1040524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Saggerson E. D., Greenbaum A. L. The effect of dietary and hormonal conditions on the activities of glycolytic enzymes in rat epididymal adipose tissue. Biochem J. 1969 Nov;115(3):405–417. doi: 10.1042/bj1150405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Saggerson E. D., Greenbaum A. L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Biochem J. 1970 Sep;119(2):193–219. doi: 10.1042/bj1190193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Schmidt K., Katz J. Metabolism of pyruvate and L-lactate by rat adipose tissue. J Biol Chem. 1969 Apr 25;244(8):2125–2131. [PubMed] [Google Scholar]
  66. Srere P. A., Foster D. W. On the proposed relation of citrate enzymes to fatty acid synthesis and ketosis in starvation. Biochem Biophys Res Commun. 1967 Mar 9;26(5):556–561. doi: 10.1016/0006-291x(67)90101-5. [DOI] [PubMed] [Google Scholar]
  67. VAGELOS P. R., ALBERTS A. W., MARTIN D. B. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533–540. [PubMed] [Google Scholar]
  68. WHITE J. E., ENGEL F. L. A lipolytic action of epinephrine and norepinephrine on rat adipose tissue in vitro. Proc Soc Exp Biol Med. 1958 Nov;99(2):375–378. doi: 10.3181/00379727-99-24355. [DOI] [PubMed] [Google Scholar]
  69. WIELAND O., EGER-NEUFELDT I. ZUR HEMMUNG DER LIPOIDSYNTHESE DER LEBER BEIM DIABETES. Biochem Z. 1963 Jul 10;337:349–359. [PubMed] [Google Scholar]
  70. WIELAND O., NEUFELDT I., NUMA S., LYNEN F. [On disorders in fatty acid synthesis in hunger and alloxan diabetes. II. Fatty acid synthesis in the liver of alloxan diabetic rats]. Biochem Z. 1963;336:455–459. [PubMed] [Google Scholar]
  71. WILLIAMSON J. R. GLYCOLYTIC CONTROL MECHANISMS. I. INHIBITION OF GLYCOLYSIS BY ACETATE AND PYRUVATE IN THE ISOLATED, PERFUSED RAT HEART. J Biol Chem. 1965 Jun;240:2308–2321. [PubMed] [Google Scholar]
  72. WINEGRAD A. I., RENOLD A. E. Studies on rat adipose tissue in vitro. I. Effects of insulin on the metabolism of glucose, pyruvate, and acetate. J Biol Chem. 1958 Aug;233(2):267–272. [PubMed] [Google Scholar]
  73. WISE E. M., Jr, BALL E. G. MALIC ENZYME AND LIPOGENESIS. Proc Natl Acad Sci U S A. 1964 Nov;52:1255–1263. doi: 10.1073/pnas.52.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wakil S. J., Goldman J. K., Williamson I. P., Toomey R. E. Stimulation of fatty acid biosynthesis by phosphorylated sugars. Proc Natl Acad Sci U S A. 1966 Apr;55(4):880–887. doi: 10.1073/pnas.55.4.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. YOUNG J. W., SHRAGO E., LARDY H. A. METABOLIC CONTROL OF ENZYMES INVOLVED IN LIPOGENESIS AND GLUCONEOGENESIS. Biochemistry. 1964 Nov;3:1687–1692. doi: 10.1021/bi00899a015. [DOI] [PubMed] [Google Scholar]
  77. von Jagow G., Westermann B., Wieland O. Suppression of pyruvate oxidation in liver mitochondria in the presence of long-chain fatty acid. Eur J Biochem. 1968 Feb;3(4):512–518. doi: 10.1111/j.1432-1033.1967.tb19561.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES