Abstract
1. Adenosine triphosphatase activities of dispersions prepared from bovine cerebral cortex that had been frozen, were greater than those of dispersions prepared from fresh tissue. The subcellular distribution of components of the dispersion was not altered by freezing the tissue and a microsomal fraction enriched in Na++K+-stimulated adenosine triphosphatase activity was prepared. 2. The bovine cerebral microsomes were further treated with a 2m-sodium iodide reagent to obtain a particulate preparation with minimal Na++K+-independent adenosine triphosphatase activity. Na++K+-stimulated activity was increased by the sodium iodide treatment and this preparation was shown to be enriched in lipid constituents. 3. Density-gradient centrifugation of the sodium iodide treated preparation gave three main subfractions each containing approximately equal amounts of phospholipid and protein. Further exposure of the sodium iodide-treated preparation to the 2m-sodium iodide reagent altered the distribution of protein and phospholipid among the fractions obtained by density-gradient centrifugation. Dissociation of phospholipids from protein in the sodium iodide-treated preparation was brought about also by high concentrations of arginine. Concentrated solutions of arginine and sodium thiocyanate brought about dissociation of phospholipids from protein of the microsomal preparation. 4. Many amino acids were found to inhibit Na++K+-stimulated adenosine triphosphatase activity when present in high concentrations. The inhibition was complex but resulted, in part at least, from diminished affinity for ATP and Na+ in the presence of the amino acids. 5. A non-ionic detergent, Lubrol W, solubilized up to 40% of the enzyme activity of the sodium iodide-treated preparation together with 30% of the protein and phospholipid in the preparation. Protein was released from the sodium iodide-treated preparation by pancreatic elastase but Na++K+-stimulated adenosine triphosphatase activity of the residue was diminished. Ultrasonic treatment of the sodium iodide-treated preparation failed to release a significant proportion of Na++K+-stimulated adenosine triphosphatase activity into a form not deposited by ultracentrifugation.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford H. F., Brownlow E. K., Gammack D. B. The distribution of cation-stimulated adenosine triphosphatase in subcellular fractions from bovine cerebral cortex. J Neurochem. 1966 Dec;13(12):1283–1297. doi: 10.1111/j.1471-4159.1966.tb04291.x. [DOI] [PubMed] [Google Scholar]
- Bradford H. F., Swanson P. D., Gammack D. B. Constituents of a microsomal fraction from the mammalian brain: their solubilization, especially by detergents. Biochem J. 1964 Aug;92(2):247–254. doi: 10.1042/bj0920247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunngraber E. G., Dekirmenjian H., Brown B. D. The distribution of protein-bound N-acetylneuraminic acid in subcellular fractions of rat brain. Biochem J. 1967 Apr;103(1):73–78. doi: 10.1042/bj1030073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. R., McIlwain H. The sodium-plus-potassium ion-activated adenosine triphosphatase of cerebral microsomal fractions: treatment with disrupting agents. Biochem J. 1967 Mar;102(3):675–683. doi: 10.1042/bj1020675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fujita M., Nagano K., Mizuno N., Tashima Y., Nakao T. Ouabain-sensitive Mg++-ATPase, K+-ATPase and Na+-ATPase activities accompanying a highly specific Na+-K+-ATPase preparation. J Biochem. 1967 Apr;61(4):473–477. doi: 10.1093/oxfordjournals.jbchem.a128570. [DOI] [PubMed] [Google Scholar]
- GIBBS R., RODDY P. M., TITUS E. PREPARATION, ASSAY, AND PROPERTIES OF AN NA+- AND K+-REQUIRING ADENOSINE TRIPHOSPHATASE FROM BEEF BRAIN. J Biol Chem. 1965 May;240:2181–2187. [PubMed] [Google Scholar]
- Hatefi Y., Hanstein W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1129–1136. doi: 10.1073/pnas.62.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hems D. A., Rodnight R. Properties of phosphate bound to cerebral microsomes during adenosine-triphosphatase activity. Biochem J. 1966 Nov;101(2):516–523. doi: 10.1042/bj1010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R. L., Aprison M. H. Mammalian brain acetylcholinesterase. Effects of surface active agents. J Neurochem. 1966 Dec;13(12):1367–1371. doi: 10.1111/j.1471-4159.1966.tb04299.x. [DOI] [PubMed] [Google Scholar]
- Jackson R. L., Aprison M. H. Mammalian brain acetylcholinesterase. Purification and properties. J Neurochem. 1966 Dec;13(12):1351–1365. doi: 10.1111/j.1471-4159.1966.tb04298.x. [DOI] [PubMed] [Google Scholar]
- KELLER E. B., LITTLEFIELD J. W. Incorporation of C14-amino acids into ribonucleoprotein particles from the Ehrlich mouse ascites tumor. J Biol Chem. 1957 Jan;224(1):13–30. [PubMed] [Google Scholar]
- Kurokawa M., Kato M., Sakamoto T. Distribution of sodium-plus-potassium-stimulated adenosine-triphosphatase activity in isolated nerve-ending particles. Biochem J. 1965 Dec;97(3):833–844. doi: 10.1042/bj0970833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lapetina E. G., Soto E. F., De Robertis E. Lipids and proteolipids in isolated subcellular membranes of rat brain cortex. J Neurochem. 1968 Jun;15(6):437–445. doi: 10.1111/j.1471-4159.1968.tb08939.x. [DOI] [PubMed] [Google Scholar]
- Lewin S. Order of strength of ionic linkages in protein interactions. Biochem J. 1969 Oct;114(4):83P–84P. doi: 10.1042/bj1140083pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakao T., Tashima Y., Nagano K., Nakao M. Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem Biophys Res Commun. 1965 Jun 9;19(6):755–758. doi: 10.1016/0006-291x(65)90323-2. [DOI] [PubMed] [Google Scholar]
- PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEMINARIO L. M., HREN N., GOMEZ C. J. LIPID DISTRIBUTION IN SUBCELLULAR FRACTIONS OF THE RAT BRAIN. J Neurochem. 1964 Mar;11:197–209. doi: 10.1111/j.1471-4159.1964.tb06129.x. [DOI] [PubMed] [Google Scholar]
- Samson F. E., Jr, Quinn D. J. Na+-K+-activated ATPase in rat brain development. J Neurochem. 1967 Apr;14(4):421–427. doi: 10.1111/j.1471-4159.1967.tb09540.x. [DOI] [PubMed] [Google Scholar]
- Schoner W., von Ilberg C., Kramer R., Seubert W. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Eur J Biochem. 1967 May;1(3):334–343. doi: 10.1007/978-3-662-25813-2_45. [DOI] [PubMed] [Google Scholar]
- Stahl W. L., Sattin A., McIlwain H. Separation of adenosine diphosphate--adenosine triphosphate-exchange activity from the cerebral microsomal sodium-plus-potassium ion-stimulated adenosine triphosphatase. Biochem J. 1966 May;99(2):404–412. doi: 10.1042/bj0990404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl W. L. The subcellular distribution and nucleotide specificities of Na+, K+-stimulated adenosine triphosphatase and [14C]adenosine diphosphate-adenosine triphosphate exchange reactions in rat brain. J Neurochem. 1968 Jun;15(6):499–509. doi: 10.1111/j.1471-4159.1968.tb08947.x. [DOI] [PubMed] [Google Scholar]
- Swanson P. D., Bradford H. F., McIlwain H. Stimulation and solubilization of the sodium ion-activated adenosine triphosphatase of cerebral microsomes by surface-active agents, especially polyoxyethylene ethers: actions of phospholipases and a neuraminidase. Biochem J. 1964 Aug;92(2):235–247. doi: 10.1042/bj0920235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uesugi S., Kahlenberg A., Medzihradsky F., Hokin L. E. Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. IV. Properties of a lubrol-solubilized beef brain microsomal enzyme. Arch Biochem Biophys. 1969 Mar;130(1):156–163. doi: 10.1016/0003-9861(69)90021-6. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- WHERRETT J. R., McILWAIN H. Gangliosides, phospholipids, protein and ribonucleic acid in subfractions of cerebral microsomal material. Biochem J. 1962 Aug;84:232–237. doi: 10.1042/bj0840232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallach D. F., Gordon A. Lipid protein interactions in cellular membranes. Fed Proc. 1968 Nov-Dec;27(6):1263–1268. [PubMed] [Google Scholar]
