Abstract
Co-metabolism of 3-methylcatechol, 4-chlorocatechol and 3,5-dichlorocatechol by an Achromobacter sp. was shown to result in the accumulation of 2-hydroxy-3-methylmuconic semialdehyde, 4-chloro-2-hydroxymuconic semialdehyde and 3,5-dichloro-2-hydroxymuconic semialdehyde respectively. Formation of these products indicated that cleavage of the aromatic nucleus of the substituted catechols was accomplished by a new meta-cleaving enzyme, catechol 1,6-oxygenase. This enzyme was equally active on both chloro- and methyl-substituted catechols.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayly R. C., Dagley S. Oxoenoic acids as metabolites in the bacterial degradation of catechols. Biochem J. 1969 Feb;111(3):303–307. doi: 10.1042/bj1110303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWKINS M. J., JUDAH J. D., REES K. R. The mechanism of action of chlorpromazine. Reduced diphosphopyridine nucleotidecytochrome c reductase and coupled phosphorylation. Biochem J. 1959 Sep;73:16–23. doi: 10.1042/bj0730016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOJIMA Y., ITADA N., HAYAISHI O. Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem. 1961 Aug;236:2223–2228. [PubMed] [Google Scholar]
