Abstract
1. Exchange of 3H2O with H2O takes place rapidly in incubated rat brain slices but at a lower rate in slices from infant brain than from adult brain. The temperature coefficient (Q10) of the exchange process, between 37 and 4°C, is 1.76 with infant brain and 1.26 with adult brain. The exchange process is unaffected by the presence of ouabain or 2,4-dinitrophenol. 2. An approximately linear relationship exists between water uptake and the concentration of ATP in the incubated slices in the presence of various concentrations of glucose. Little or no change occurs in water uptake and ATP concentration in the presence of a glucose concentration exceeding 3mm. A linear relationship also exists between the water uptake and ATP concentration in the presence of 10mm-glucose and various concentrations of sodium l-glutamate but the line is parallel to that found with changed glucose concentrations and shifted in the direction of increased water uptake. A similar parallel relationship exists between water uptake and ATP concentration in the presence of 2,4-dinitrophenol, but the amount of water uptake is significantly smaller in the presence of 2,4-dinitrophenol than in its absence. 3. Copper chloride (0.3mm) or mercuric chloride (0.3mm) both increase water uptake and diminish the ATP concentration in slices. Sodium malonate (2mm) or sodium d-glutamate (10mm) has similar effects. 4. Substances, or conditions, affecting water uptake in incubated brain slices may be divided roughly into two classes in accordance with their effects on adenosine triphosphatase and membrane permeability, but there may be considerable lack of specificity.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES A., 3rd Studies on water and electrolytes in nervous tissue. II. Effect of glutamate and glutamine. J Neurophysiol. 1956 May;19(3):213–223. doi: 10.1152/jn.1956.19.3.213. [DOI] [PubMed] [Google Scholar]
- Abdel-Latif A. A., Brody J., Ramahi H. Studies on sodium-potassium adenosine triphosphatase of the nerve endings and appearance of electrical activity in developing rat brain. J Neurochem. 1967 Dec;14(12):1133–1141. doi: 10.1111/j.1471-4159.1967.tb06160.x. [DOI] [PubMed] [Google Scholar]
- Ames A., 3rd, Tsukada Y., Nesbett F. B. Intracellular Cl-, Na+, K+, Ca2+, Mg2+, and P in nervous tissue; response to glutamate and to changes in extracellular calcium. J Neurochem. 1967 Feb;14(2):145–159. doi: 10.1111/j.1471-4159.1967.tb05887.x. [DOI] [PubMed] [Google Scholar]
- BACHELARD H. S., CAMPBELL W. J., McILWAIN H. The sodium and other ions of mammalian cerebral tissues, maintained and electrically stimulated in vitro. Biochem J. 1962 Aug;84:225–232. doi: 10.1042/bj0840225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERING E. A., Jr Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952 May;9(3):275–287. doi: 10.3171/jns.1952.9.3.0275. [DOI] [PubMed] [Google Scholar]
- Bourke R. S., Tower D. B. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. I. Swelling and solute distribution in mature cerebral cortex. J Neurochem. 1966 Nov;13(11):1071–1097. doi: 10.1111/j.1471-4159.1966.tb04267.x. [DOI] [PubMed] [Google Scholar]
- Bourke R. S., Tower D. B. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J Neurochem. 1966 Nov;13(11):1099–1117. doi: 10.1111/j.1471-4159.1966.tb04268.x. [DOI] [PubMed] [Google Scholar]
- Bradford H. F., McIlwain H. Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids. J Neurochem. 1966 Nov;13(11):1163–1177. doi: 10.1111/j.1471-4159.1966.tb04274.x. [DOI] [PubMed] [Google Scholar]
- CURTIS D. R., PHILLIS J. W., WATKINS J. C. The chemical excitation of spinal neurones by certain acidic amino acids. J Physiol. 1960 Mar;150:656–682. doi: 10.1113/jphysiol.1960.sp006410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEUL D. H., McILWAIN H. Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J Neurochem. 1961 Dec;8:246–256. doi: 10.1111/j.1471-4159.1961.tb13550.x. [DOI] [PubMed] [Google Scholar]
- ELLIOTT K. A., PAPPIUS H. M. Water distribution in incubated slices of brain and other tissues. Can J Biochem Physiol. 1956 Sep;34(5):1007–1022. [PubMed] [Google Scholar]
- Epstein P. S., McIlwain H. Actions of cupric salts on isolated cerebral tissues. Proc R Soc Lond B Biol Sci. 1966 Dec 13;166(1004):295–302. doi: 10.1098/rspb.1966.0100. [DOI] [PubMed] [Google Scholar]
- Harvey J. A., McIlwain H. Excitatory acidic amino acids and the cation content and sodium ion flux of isolated tissues from the brain. Biochem J. 1968 Jun;108(2):269–274. doi: 10.1042/bj1080269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito T., Quastel J. H. Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem J. 1970 Feb;116(4):641–655. doi: 10.1042/bj1160641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOANNY P., HILLMAN H. FURTHER STUDIES ON THE POTASSIUM AND SODIUM CONCENTRATIONS OF MAMMALIAN CEREBRAL SLICES IN VITRO. J Neurochem. 1964 Jun;11:413–422. doi: 10.1111/j.1471-4159.1964.tb11600.x. [DOI] [PubMed] [Google Scholar]
- KEESEY J. C., WALLGREN H., MCILWAIN H. THE SODIUM, POTASSIUM AND CHLORIDE OF CEREBRAL TISSUES: MAINTENANCE, CHANGE ON STIMULATION AND SUBSEQUENT RECOVERY. Biochem J. 1965 May;95:289–300. doi: 10.1042/bj0950289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEESEY J. C., WALLGREN H. MOVEMENTS OF RADIOACTIVE SODIUM IN CEREBRAL-CORTEX SLICES IN RESPONSE TO ELECTRICAL STIMULATION. Biochem J. 1965 May;95:301–310. doi: 10.1042/bj0950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol. 1963 Feb;165:274–304. doi: 10.1113/jphysiol.1963.sp007057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Tetrodotoxin-sensitive uptake of ions and water byslices of rat brain in vitro. Biochem J. 1970 Nov;120(1):37–47. doi: 10.1042/bj1200037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPPIUS H. M., ROSENFELD M., JOHNSON D. M., ELLIOTT K. A. Effects of sodium-free media upon the metabolism and the potassium and water contents of brain slices. Can J Biochem Physiol. 1958 Feb;36(2):217–226. [PubMed] [Google Scholar]
- PAPPIUS H. M. WATER TRANSPORT AT CELL MEMBRANES. Can J Biochem. 1964 Jun;42:945–953. doi: 10.1139/o64-106. [DOI] [PubMed] [Google Scholar]
- Peters R., Shorthouse M., Walshe J. M. Studies on the toxicity of copper. II. The behaviour of microsomal membrane ATPase of the pigeon's brain tissue to copper and some other metallic substances. Proc R Soc Lond B Biol Sci. 1966 Dec 13;166(1004):285–294. doi: 10.1098/rspb.1966.0099. [DOI] [PubMed] [Google Scholar]
- Pull I., McIlwain H., Ramsay R. L. Glutamate, calcium ion-chelating agents and the sodium and potassium ion contents of tissues from the brain. Biochem J. 1970 Jan;116(2):181–187. doi: 10.1042/bj1160181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. D. Adenosinediphosphate metabolism in brain microsomes: structural organization and enzymic activity. J Neurochem. 1967 Dec;14(12):1143–1154. doi: 10.1111/j.1471-4159.1967.tb06161.x. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Samson F. E., Jr, Quinn D. J. Na+-K+-activated ATPase in rat brain development. J Neurochem. 1967 Apr;14(4):421–427. doi: 10.1111/j.1471-4159.1967.tb09540.x. [DOI] [PubMed] [Google Scholar]
- Sen A. K., Tobin T. A cycle for ouabain inhibition of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1969 Dec 25;244(24):6596–6604. [PubMed] [Google Scholar]
- Stern J. R., Eggleston L. V., Hems R., Krebs H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem J. 1949;44(4):410–418. [PMC free article] [PubMed] [Google Scholar]
- TAKAGAKI G., HIRANO S., NAGATA Y. Some observations on the effect of D-glutamate on the glucose metabolism and the accumulation of potassium ions in brain cortex slices. J Neurochem. 1959 Jun;4(2):124–134. doi: 10.1111/j.1471-4159.1959.tb13181.x. [DOI] [PubMed] [Google Scholar]
- TERNER C., EGGLESTON L. V., KREBS H. A. The role of glutamic acid in the transport of potassium in brain and retina. Biochem J. 1950 Aug;47(2):139–149. doi: 10.1042/bj0470139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tower D. B., Bourke R. S. Fluid compartmentation and electrolytes of cat cerebral cotex in vitro. 3. Ontogenetic and comparative aspects. J Neurochem. 1966 Nov;13(11):1119–1137. doi: 10.1111/j.1471-4159.1966.tb04269.x. [DOI] [PubMed] [Google Scholar]
- VARON S., McILWAIN H. Fluid content and compartments in isolated cerebral tissues. J Neurochem. 1961 Dec;8:262–275. doi: 10.1111/j.1471-4159.1961.tb13552.x. [DOI] [PubMed] [Google Scholar]
- WALLGREN H., KULONEN E. Effect of ethanol on respiration of rat-brain-cortex slices. Biochem J. 1960 Apr;75:150–158. doi: 10.1042/bj0750150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLGREN H. Rapid changes in creatine and adenosine phosphates of cerebral cortex slices on electrical stimulation with special reference to the effect of ethanol. J Neurochem. 1963 May;10:349–362. doi: 10.1111/j.1471-4159.1963.tb05050.x. [DOI] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices. Biochem J. 1954 Mar;56(3):445–453. doi: 10.1042/bj0560445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zadunaisky J. A., Wald F., De Robertis E. D. Osmotic behavior and glial changes in isolated frog brains. Prog Brain Res. 1965;15:196–218. doi: 10.1016/s0079-6123(08)60947-4. [DOI] [PubMed] [Google Scholar]
