Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Nov;120(1):117–124. doi: 10.1042/bj1200117

Nucleic acid synthesis and nucleotide pools in purine-deficient Escherichia coli

Gillian A Thomas 1,*, N F Varney 1, K Burton 1
PMCID: PMC1179575  PMID: 4395452

Abstract

1. The synthesis of nucleic acids and the content of purine nucleotides have been studied in selected purine-requiring strains of Escherichia coli including a purB strain and a purB guaA strain. 2. When the exogenous purines can be converted into GTP but not into ATP, RNA is synthesized at the expense of intracellular ATP, ADP and AMP. 3. Net synthesis of RNA as measured by the incorporation of uracil can be correlated with the availability of GTP except when ATP falls to a very low concentration. 4. Nicotinamide nucleotides are not an important reservoir of adenine nucleotides for RNA synthesis.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUCHWALD M., BRITTEN R. J. Incorporation of ribonucleic acid bases into the metabolic pool and RNA of E. coli. Biophys J. 1963 Mar;3:155–166. doi: 10.1016/s0006-3495(63)86811-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edlin G., Stent G. S. Nucleoside triphosphate pools and the regulation of RNA synthesis in E. coli. Proc Natl Acad Sci U S A. 1969 Feb;62(2):475–482. doi: 10.1073/pnas.62.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  4. Jeffries G. A., Burton K. Effects of limiting different urine nucleotide precursors on nucleic acid synthesis and nucleotide pools of purine-requiring mutants of Escherichia coli. Biochem J. 1969 Sep;114(2):42P–43P. doi: 10.1042/bj1140042pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lazzarini R. A., Nakata K., Winslow R. M. Coordinate control of ribonucleic acid synthesis during uracil deprivation. J Biol Chem. 1969 Jun 10;244(11):3092–3100. [PubMed] [Google Scholar]
  6. London J., Knight M. Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. J Gen Microbiol. 1966 Aug;44(2):241–254. doi: 10.1099/00221287-44-2-241. [DOI] [PubMed] [Google Scholar]
  7. MAGASANIK B., KARIBIAN D. Purine nucleotide cycles and their metabolic role. J Biol Chem. 1960 Sep;235:2672–2681. [PubMed] [Google Scholar]
  8. MANS R. J., KOCH A. L. Metabolism of adenosine and deoxyadenosine by growing cultures of Escherichia coli. J Biol Chem. 1960 Feb;235:450–456. [PubMed] [Google Scholar]
  9. McCarthy B. J., Britten R. J. The Synthesis of Ribosomes in E. coli: I. The Incorporation of C-Uracil into the Metabolic Pool and RNA. Biophys J. 1962 Jan;2(1):35–47. doi: 10.1016/s0006-3495(62)86839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mueller K., Bremer H. Rate of synthesis of messenger ribonucleic acid in Escherichia coli. J Mol Biol. 1968 Dec;38(3):329–353. doi: 10.1016/0022-2836(68)90390-2. [DOI] [PubMed] [Google Scholar]
  11. PARDEE A. B. Effect of energy supply on enzyme induction by pyrimidine requiring mutants of Escherichia coli. J Bacteriol. 1955 Mar;69(3):233–239. doi: 10.1128/jb.69.3.233-239.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RUSHIZKY G. W., KNIGHT C. A. An oligonucleotide mapping procedure and its use in the study of tobacco mosaic virus nucleic acid. Virology. 1960 May;11:236–249. doi: 10.1016/0042-6822(60)90064-7. [DOI] [PubMed] [Google Scholar]
  13. STONE A. B., BURTON K. Studies on the deoxyribonucleases of bacteriophage-infected Escherichia coli. Biochem J. 1962 Dec;85:600–606. doi: 10.1042/bj0850600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Waterfield W. R., Spanner J. A., Stanford F. G. Tritium exchange from compounds in dilute aqueous solutions. Nature. 1968 May 4;218(5140):472–473. doi: 10.1038/218472a0. [DOI] [PubMed] [Google Scholar]
  15. Weissbach H., Redfield B., Kaback H. R. Nucleotide binding by Escherichia coli membranes and solubilized membrane proteins. Arch Biochem Biophys. 1969 Dec;135(1):66–74. doi: 10.1016/0003-9861(69)90517-7. [DOI] [PubMed] [Google Scholar]
  16. ZIMMERMAN E. F., MAGASANIK B. UTILIZATION AND INTERCONVERSION OF PURINE BASES AND RIBONUCLEOSIDES BY SALMONELLA TYPHIMURIUM. J Biol Chem. 1964 Jan;239:293–300. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES