Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Nov;120(1):195–203. doi: 10.1042/bj1200195

The subcellular localization of di- and tri-peptide hydrolase activity in guinea-pig small intestine

T J Peters 1
PMCID: PMC1179584  PMID: 5494224

Abstract

1. Two different subcellular fractionation techniques were applied to guinea-pig intestinal mucosa and the composition of the brush borders prepared by the two methods were compared. 2. By using a kinetic assay system the subcellular distribution of activity against ten dipeptides and five tripeptides was studied. 3. Only small amounts (5–10%) of activity against dipeptides were found in the brush-border region, the enzymes being concentrated in the cytosol. 4. Significant amounts (10–60%) of activity against tripeptides were found in the brush border with the remainder largely present in the soluble fraction. 5. The relevance of these studies to the localization in vivo and the possible role of peptidases in protein digestion is discussed.

Full text

PDF
195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGAR W. T., HIRD F. J., SIDHU G. S. The active absorption of amino-acids by the intestine. J Physiol. 1953 Aug;121(2):255–263. doi: 10.1113/jphysiol.1953.sp004945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGESS E. A., LEVIN B., MAHALANABIS D., TONGE R. E. HEREDITARY SUCROSE INTOLERANCE: LEVELS OF SUCRASE ACTIVITY IN JEJUNAL MUCOSA. Arch Dis Child. 1964 Oct;39:431–443. doi: 10.1136/adc.39.207.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryce G. F., Rabin B. R. The assay and reaction kinetics of leucine aminopeptidase from swine kidney. Biochem J. 1964 Mar;90(3):509–512. doi: 10.1042/bj0900509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CLARK B., PORTEOUS J. W. THE METAL ION ACTIVATION OF THE ALKALINE BETA-GLYCEROPHOSPHATASE OF RABBIT SMALL INTESTINE. Biochem J. 1965 May;95:475–482. doi: 10.1042/bj0950475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  6. DAVIS N. C., SMITH E. L. Action of tripeptidase on dipeptides of appropriate structure. J Biol Chem. 1955 May;214(1):209–213. [PubMed] [Google Scholar]
  7. De Duve C. Evolution of the peroxisome. Ann N Y Acad Sci. 1969 Dec 19;168(2):369–381. doi: 10.1111/j.1749-6632.1969.tb43124.x. [DOI] [PubMed] [Google Scholar]
  8. Dolly J. O., Fottrell P. F. Substrate specificity of mammalian intestinal dipeptidases and tripeptidases. Biochem J. 1969 Mar;111(5):30P–30P. doi: 10.1042/bj1110030pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLIS D., FRUTON J. S. On the proteolytic enzymes of animal tissues. IX. Calf thymus tripeptidase. J Biol Chem. 1951 Jul;191(1):153–159. [PubMed] [Google Scholar]
  10. Eichholz A. Structural and functional organization of the brush border of intestinal epithelial cells. 3. Enzymic activities and chemical composition of various fractions of tris-disrupted brush borders. Biochim Biophys Acta. 1967 Jul 3;135(3):475–482. doi: 10.1016/0005-2736(67)90037-5. [DOI] [PubMed] [Google Scholar]
  11. FLEISHER G. A., PANKOW M., WARMKA C. LEUCINE AMINOPEPTIDASE IN HUMAN SERUM: COMPARISON OF HYDROLYSIS OF L-LEUCYLGLYCINE AND L-LEUCYL-BETA-NAPHTHYLAMIDE. Clin Chim Acta. 1964 Mar;9:259–268. doi: 10.1016/0009-8981(64)90105-6. [DOI] [PubMed] [Google Scholar]
  12. Fern E. B., Hider R. C., London D. R. The sites of hydrolysis of dipeptides containing leucine and glycine by rat jejunum in vitro. Biochem J. 1969 Oct;114(4):855–861. doi: 10.1042/bj1140855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher R. B. Absorption of proteins. Br Med Bull. 1967 Sep;23(3):241–246. doi: 10.1093/oxfordjournals.bmb.a070564. [DOI] [PubMed] [Google Scholar]
  14. Fishman W. H., Goldman S. S., DeLellis R. Dual localization of beta-glucuronidase in endoplasmic reticulum and in lysosomes. Nature. 1967 Feb 4;213(5075):457–460. doi: 10.1038/213457a0. [DOI] [PubMed] [Google Scholar]
  15. Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friedrich M., Noack R., Schenk G. Zur Lokalisation von peptidatischen und proteolytischen Aktvitäten in isolierten Bürstensäumen aus der Mucosa des Rattendünndarmes. Biochem Z. 1965 Dec 31;343(4):346–353. [PubMed] [Google Scholar]
  17. GOLDBARG J. A., RUTENBURG A. M. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases. Cancer. 1958 Mar-Apr;11(2):283–291. doi: 10.1002/1097-0142(195803/04)11:2<283::aid-cncr2820110209>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  18. HOLT J. H., MILLER D. The localization of phosphomonoesterase and aminopeptidase in brush borders isolated from intestinal epithelial cells. Biochim Biophys Acta. 1962 Apr 9;58:239–243. doi: 10.1016/0006-3002(62)91004-1. [DOI] [PubMed] [Google Scholar]
  19. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  20. Hatcher D. W., Goldstein G. Improved methods for determination of RNA and DNA. Anal Biochem. 1969 Oct 1;31(1):42–50. doi: 10.1016/0003-2697(69)90239-5. [DOI] [PubMed] [Google Scholar]
  21. Heizer W. D., Laster L. Hydrolases in the mucosa of rat small intestine for phenylalanine-containing dipeptides. Biochim Biophys Acta. 1969;185(2):409–423. doi: 10.1016/0005-2744(69)90434-3. [DOI] [PubMed] [Google Scholar]
  22. Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jos J., Frezal J., Rey J., Lamy M. Histochemical localization of intestinal disaccharidases: application to peroral biopsy specimens. Nature. 1967 Feb 4;213(5075):516–518. doi: 10.1038/213516a0. [DOI] [PubMed] [Google Scholar]
  24. LENARD J., JOHNSON S. L., HYMAN R. W., HESS G. P. A CONTINUOUS, AUTOMATIC METHOD FOR THE STUDY OF RATE OF HYDROLYSIS OF PEPTIDES AND AMIDES. Anal Biochem. 1965 Apr;11:30–41. doi: 10.1016/0003-2697(65)90039-4. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. MAHLER H. R., HUBSCHER G., BAUM R. Studies on uricase. I. Preparation, purification, and properties of a cuproprotein. J Biol Chem. 1955 Oct;216(2):625–641. [PubMed] [Google Scholar]
  27. MORTON R. K. The purification of aklaline phosphatases of animal tissues. Biochem J. 1954 Aug;57(4):595–603. doi: 10.1042/bj0570595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matthews D. M., Craft I. L., Geddes D. M., Wise I. J., Hyde C. W. Absorption of glycine and glycine peptides from the small intestine of the rat. Clin Sci. 1968 Dec;35(3):415–424. [PubMed] [Google Scholar]
  29. Matthews D. M., Lis M. T., Cheng B., Crampton R. F. Observations on the intestinal absorption of some oligopeptides of methionine and glycine in the rat. Clin Sci. 1969 Dec;37(3):751–764. [PubMed] [Google Scholar]
  30. NACHLAS M. M., MONIS B., ROSENBATT D., SELIGMAN A. M. Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol. 1960 Apr;7:261–264. doi: 10.1083/jcb.7.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. NAKAGAWA S., TSUJI H. ELECTROPHORETIC SEPARATION OF LEUCINE AMINOPEPTIDASE AND LEUCYL-BETA-NAPHTHYLAMIDE-SPLITTING ENZYME. Clin Chim Acta. 1964 Dec;10:572–573. doi: 10.1016/0009-8981(64)90200-1. [DOI] [PubMed] [Google Scholar]
  32. NEWEY H., SMYTH D. H. Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol. 1960 Jul;152:367–380. doi: 10.1113/jphysiol.1960.sp006493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noack R., Koldovský O., Friedrich M., Heringová A., Jirsová V., Schenk G. Proteolytic and peptidase activities of the jejunum and ileum of the rat during postnatal development. Biochem J. 1966 Sep;100(3):775–778. doi: 10.1042/bj1000775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. PATTERSON E. K., HSIAO S. H., KEPPEL A. STUDIES ON DIPEPTIDASES AND AMINOPEPTIDASES. I. DISTINCTION BETWEEN LEUCINE AMINOPEPTIDASE AND ENZYMES THAT HYDROLYZE L-LEUCYL-BETA-NAPHTHYLAMIDE. J Biol Chem. 1963 Nov;238:3611–3620. [PubMed] [Google Scholar]
  35. Peters T. J., Modha K., MacMahon M. T. The digestion and absorption of glycine oligopeptides. Gut. 1969 Dec;10(12):1055–1055. [PubMed] [Google Scholar]
  36. Peters T. J. Studies on the subcellular localization of peptidases in intestinal mucosa. Gut. 1968 Dec;9(6):727–727. [PubMed] [Google Scholar]
  37. Porteous J. W. The isolation of purified brush borders from rat small intestine. FEBS Lett. 1968 Jul;1(1):46–49. doi: 10.1016/0014-5793(68)80015-8. [DOI] [PubMed] [Google Scholar]
  38. ROBINSON D. S., BIRNBAUM S. M., GREENSTEIN J. P. Purification and properties of an aminopeptidase from kidney cellular particulates. J Biol Chem. 1953 May;202(1):1–26. [PubMed] [Google Scholar]
  39. ROBINSON G. B. The distribution of peptidases in subcellular fractions from the mucosa of the small intestine of the rat. Biochem J. 1963 Jul;88:162–168. doi: 10.1042/bj0880162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. ROY A. B. The sulphatase of ox liver. I. The complex nature of the enzyme. Biochem J. 1953 Jan;53(1):12–15. doi: 10.1042/bj0530012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rehfeld N., Peters J. E., Giesecke H., Beier L., Haschen R. J. Untersuchungen über Aminosäure-arylamidasen. I. Verteilung und Isoenzyme der Aminosäure-arylamidase im menschlichen Organismus. Acta Biol Med Ger. 1967;19(6):809–818. [PubMed] [Google Scholar]
  42. Rhodes J. B., Eichholz A., Crane R. K. Studies on the organization of the brush border in intestinal epithelial cells. IV. Aminopeptidase activity in microvillus membranes of hamster intestinal brush borders. Biochim Biophys Acta. 1967;135(5):959–965. doi: 10.1016/0005-2736(67)90065-x. [DOI] [PubMed] [Google Scholar]
  43. SMITH E. E., KAUFMAN J. T., RUTENBURG A. M. THE PARTIAL PURIFICATION OF AN AMINO AICD NAPHTHYLAMIDASE FROM HUMAN LIVER. J Biol Chem. 1965 Apr;240:1718–1721. [PubMed] [Google Scholar]
  44. SYLVEN B., SNELLMAN O. STUDIES ON THE HISTOCHEMICAL "LEUCINE AMINOPEPTIDASE" REACTION. 3. ON THE DIFFERENT LNA-SPLITTING ENZYMES FROM SPLEEN. Z Zellforch Microsk Anat Histochem. 1964 Apr 10;78:484–486. doi: 10.1007/BF00736629. [DOI] [PubMed] [Google Scholar]
  45. UGOLEV A. M., IESUITOVA N. N., TIMOFEEVA N. M., FEDIUSHINA I. N. LOCATION OF HYDROLYSIS OF CERTAIN DISACCHARIDES AND PEPTIDES IN THE SMALL INTESTINE. Nature. 1964 May 23;202:807–809. doi: 10.1038/202807a0. [DOI] [PubMed] [Google Scholar]
  46. Widnell C. C., Hamilton T. H., Tata J. R. The isolation of enzymically active nuclei from the rat heart and uterus. J Cell Biol. 1967 Mar;32(3):766–770. doi: 10.1083/jcb.32.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wrigglesworth J. M., Pover W. F. Subcellular distribution of (lysosomal enzymes) in guinea pig small intestine. Life Sci. 1966 Aug;5(15):1365–1371. doi: 10.1016/0024-3205(66)90111-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES