Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Nov;120(2):255–261. doi: 10.1042/bj1200255

Molecular weight of Escherichia coli β-galactosidase in concentrated solutions of guanidine hydrochloride

Robert P Erickson 1,*
PMCID: PMC1179595  PMID: 4924171

Abstract

The molecular weight of Escherichia coli β-galactosidase was determined in 6m- and 8m-guanidine hydrochloride by meniscus-depletion sedimentation equilibrium, sedimentation velocity and viscosity. Sedimentation equilibrium revealed heterogeneity with the smallest component having a molecular weight of about 50000. At lower speeds, the apparent weight-average molecular weight is about 80000. By use of a calculation based on an empirical correlation for proteins that are random coils in 6m-guanidine hydrochloride, sedimentation velocity gave a molecular weight of 91000, and the intrinsic viscosity indicated a viscosity-average molecular weight of 84000. Heating in 6m-guanidine hydrochloride lowered the viscosity of β-galactosidase in a variable manner.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auer H. E., Doty P. The conformational stability of alpha-helical nonpolar polypeptides in solution. Biochemistry. 1966 May;5(5):1716–1725. doi: 10.1021/bi00869a038. [DOI] [PubMed] [Google Scholar]
  2. CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
  3. Erickson R. P., Steers E., Jr Evidence for pyrrolidone carboxylic acid in beta-galactosidase from E. Biochem Biophys Res Commun. 1969 Nov 20;37(5):736–743. doi: 10.1016/0006-291x(69)90953-x. [DOI] [PubMed] [Google Scholar]
  4. GREEN N. M. AVIDIN. 4. STABILITY AT EXTREMES OF PH AND DISSOCIATION INTO SUB-UNITS BY GUANIDINE HYDROCHLORIDE. Biochem J. 1963 Dec;89:609–620. doi: 10.1042/bj0890609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Givol D., Craven G. R., Steers E., Jr, Anfinsen C. B. Effect of limited digestion by proteolytic enzymes on Escherichia coli beta-galactosidase. Biochim Biophys Acta. 1966 Jan 11;113(1):120–125. doi: 10.1016/s0926-6593(66)80127-3. [DOI] [PubMed] [Google Scholar]
  6. Goldberg M. E., Edelstein S. J. Sedimentation equilibrium of paucidisperse systems. Subunit structure of complemented beta-galactosidase. J Mol Biol. 1969 Dec 28;46(3):431–440. doi: 10.1016/0022-2836(69)90186-7. [DOI] [PubMed] [Google Scholar]
  7. Goldberg M. E. Tertiary structure of Escherichia coli beta-D-galactosidase. J Mol Biol. 1969 Dec 28;46(3):441–446. doi: 10.1016/0022-2836(69)90187-9. [DOI] [PubMed] [Google Scholar]
  8. Kawahara K., Tanford C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem. 1966 Jul 10;241(13):3228–3232. [PubMed] [Google Scholar]
  9. Newton A. Effect of nonsense mutations on translation of the lactose operon of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1966;31:181–187. doi: 10.1101/sqb.1966.031.01.026. [DOI] [PubMed] [Google Scholar]
  10. Newton A. Re-initiation of polypeptide synthesis and polarity in the lac operon of Escherichia coli. J Mol Biol. 1969 May 14;41(3):329–339. doi: 10.1016/0022-2836(69)90279-4. [DOI] [PubMed] [Google Scholar]
  11. STEERS E., Jr, CRAVEN G. R., ANFINSEN C. B., BETHUNE J. L. EVIDENCE FOR NONIDENTICAL CHAINS IN THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2478–2484. [PubMed] [Google Scholar]
  12. Steers E., Jr, Craven G. R., Anfinsen C. B. Comparison of beta-galactosidases from normal (i-o+z+) and operator constitutive (i-ocz+) strains of E. coli. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1174–1181. doi: 10.1073/pnas.54.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ullmann A., Goldberg M. E., Perrin D., Monod J. On the determination of molecular weight of proteins and protein subunits in the presence of 6 M guanidine hydrochloride. Biochemistry. 1968 Jan;7(1):261–265. doi: 10.1021/bi00841a031. [DOI] [PubMed] [Google Scholar]
  14. Ullmann A., Jacob F., Monod J. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):339–343. doi: 10.1016/0022-2836(67)90341-5. [DOI] [PubMed] [Google Scholar]
  15. Ullmann A., Perrin D., Jacob F., Monod J. Identification par complémentation in vitro et purification d'un segment peptidique de la beta-galatosidase d'escherichia coli. J Mol Biol. 1965 Jul;12(3):918–923. doi: 10.1016/s0022-2836(65)80338-2. [DOI] [PubMed] [Google Scholar]
  16. WALLENFELS K., SUND H., WEBER K. DIE UNTEREINHEITEN DER BETA-GALAKTOSIDASE AUS E. COLI. Biochem Z. 1963;338:714–727. [PubMed] [Google Scholar]
  17. WOODS E. F., HIMMELFARB S., HARRINGTON W. F. Studies on the structure of myosin in solution. J Biol Chem. 1963 Jul;238:2374–2385. [PubMed] [Google Scholar]
  18. Zipser D., Zabell S., Rothman J., Grodzicker T., Wenk M. Fine structure of the gradient of polarity in the z gene of the lac operon of Escherichia coli. J Mol Biol. 1970 Apr 14;49(1):251–254. doi: 10.1016/0022-2836(70)90392-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES