Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Dec;120(3):635–642. doi: 10.1042/bj1200635

The identity of a myelin-like fraction isolated from developing brain

H C Agrawal 1,*, N L Banik 1, A H Bone 1, A N Davison 1, R F Mitchell 1, Martha Spohn 1
PMCID: PMC1179645  PMID: 5499976

Abstract

1. A myelin-like membrane fraction was isolated from developing rat brain by a new method. 2. The chemical composition and morphology of the fraction are described. 3. The myelin-like fraction is similar to myelin in characteristic enzyme activity but differs in the absence of basic protein and cerebrosides. No similarity to other subcellular fractions was observed. 4. It is suggested that the myelin-like fraction is a stage in the formation of compact myelin from glial plasma membrane. 5. `Early' myelin consists of the myelin-like and compact myelin fractions from developing brain.

Full text

PDF
635

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal H. C., Bone A. H., Davison A. N. Effect of phenylalanine on protein synthesis in the developing rat brain. Biochem J. 1970 Apr;117(2):325–331. doi: 10.1042/bj1170325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashworth L. A., Green C. Plasma membranes: phospholipid and sterol content. Science. 1966 Jan 14;151(3707):210–211. doi: 10.1126/science.151.3707.210. [DOI] [PubMed] [Google Scholar]
  3. Banik N. L., Blunt M. J., Davison A. N. Changes in the osmiophilia of myelin and lipid content in the kitten optic nerve. J Neurochem. 1968 Jun;15(6):471–475. doi: 10.1111/j.1471-4159.1968.tb08943.x. [DOI] [PubMed] [Google Scholar]
  4. Banik N. L., Davison A. N. Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain. Biochem J. 1969 Dec;115(5):1051–1062. doi: 10.1042/bj1151051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bass N. H., Netsky M. G., Young E. Microchemical studies of postnatal development in rat cerebrum. 1. Migration and differentiation of cells. Neurology. 1969 Mar;19(3):258–268. doi: 10.1212/wnl.19.3.258. [DOI] [PubMed] [Google Scholar]
  6. Caley D. W., Maxwell D. S. An electron microscopic study of the neuroglia during postnatal development of the rat cerebrum. J Comp Neurol. 1968 May;133(1):45–70. doi: 10.1002/cne.901330104. [DOI] [PubMed] [Google Scholar]
  7. Cotman C. W., Mahler H. R. Resolution of insoluble proteins in rat brain subcellular fractions. Arch Biochem Biophys. 1967 May;120(2):384–396. doi: 10.1016/0003-9861(67)90255-x. [DOI] [PubMed] [Google Scholar]
  8. Cuzner M. L., Davison A. N. The lipid composition of rat brain myelin and subcellular fractions during development. Biochem J. 1968 Jan;106(1):29–34. doi: 10.1042/bj1060029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVISON A. N., DOBBING J., MORGAN R. S., WRIGHT G. P. The deposition and disposal of (4-14C) cholesterol in the brain of growing chickens. J Neurochem. 1958 Oct;3(1):89–94. doi: 10.1111/j.1471-4159.1958.tb12612.x. [DOI] [PubMed] [Google Scholar]
  10. Dalal K. B., Einstein E. R. Biochemical maturation of the central nervous system. I. Lipid changes. Brain Res. 1969 Dec;16(2):441–451. doi: 10.1016/0006-8993(69)90237-6. [DOI] [PubMed] [Google Scholar]
  11. Davison A. N., Cuzner M. L., Banik N. L., Oxberry J. Myelinogenesis in the rat brain. Nature. 1966 Dec 17;212(5068):1373–1374. doi: 10.1038/2121373a0. [DOI] [PubMed] [Google Scholar]
  12. Duckett S., Blunt M. J. Sequential appearance of phosphoglycerides and protein in developing myelin. Nature. 1967 Sep 9;215(5106):1192–1193. doi: 10.1038/2151192a0. [DOI] [PubMed] [Google Scholar]
  13. Eng L. F., Chao F. C., Gerstl B., Pratt D., Tavaststjerna M. G. The maturation of human white matter myelin. Fractionation of the myelin membrane proteins. Biochemistry. 1968 Dec;7(12):4455–4465. doi: 10.1021/bi00852a042. [DOI] [PubMed] [Google Scholar]
  14. Eng L. F., Noble E. P. The maturation of rat brain myelin. Lipids. 1968 Mar;3(2):157–162. doi: 10.1007/BF02531734. [DOI] [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. GRAY E. G., WHITTAKER V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 1962 Jan;96:79–88. [PMC free article] [PubMed] [Google Scholar]
  17. HESS H. H., LEWIN E. MICROASSAY OF BIOCHEMICAL STRUCTURAL COMPONENTS IN NERVOUS TISSUES. II. METHODS FOR CEREBROSIDES, PROTEOLIPID PROTEINS AND RESIDUE PROTEINS. J Neurochem. 1965 Mar;12:205–211. doi: 10.1111/j.1471-4159.1965.tb06756.x. [DOI] [PubMed] [Google Scholar]
  18. HOROWICZ P., LARRABEE M. G. Oxidation of glucose in a mammalian sympathetic ganglion at rest and in activity. J Neurochem. 1962 Jan-Feb;9:1–21. doi: 10.1111/j.1471-4159.1962.tb07488.x. [DOI] [PubMed] [Google Scholar]
  19. Hall T. C., Cocking E. C. High-efficiency liquid-scintillation counting of 14C-labelled material in aqueous solution and determination of specific activity of labelled proteins. Biochem J. 1965 Sep;96(3):626–633. doi: 10.1042/bj0960626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horrocks L. A. Composition of mouse brain myelin during development. J Neurochem. 1968 Jun;15(6):483–488. doi: 10.1111/j.1471-4159.1968.tb08945.x. [DOI] [PubMed] [Google Scholar]
  21. Kornguth S. E., Anderson J. W., Scott G. Temporal relationship between myelinogenesis and the appearance of a basic protein in the spinal cord of the white rat. J Comp Neurol. 1966 May;127(1):1–18. doi: 10.1002/cne.901270102. [DOI] [PubMed] [Google Scholar]
  22. Kurihara T., Tsukada Y. The regional and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the central nervous system. J Neurochem. 1967 Dec;14(12):1167–1174. doi: 10.1111/j.1471-4159.1967.tb06164.x. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lapetina E. G., Soto E. F., de Robertis E. Gangliosides and acetylcholinesterase in isolated membranes of the rat-brain cortex. Biochim Biophys Acta. 1967 Feb 1;135(1):33–43. doi: 10.1016/0005-2736(67)90005-3. [DOI] [PubMed] [Google Scholar]
  25. Lehninger A. L. The neuronal membrane. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1069–1080. doi: 10.1073/pnas.60.4.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martenson R. E., Deibler G. E., Kies M. W. Microheterogeneity of guinea pig myelin basic protein. J Biol Chem. 1969 Aug 25;244(16):4261–4267. [PubMed] [Google Scholar]
  27. Martenson R. E., Deibler G. E., Kies M. W. Myelin basic proteins of the rat central nervous system. Purification, encephalitogenic properties, and amino acid compositions. Biochim Biophys Acta. 1970 Feb 17;200(2):353–362. doi: 10.1016/0005-2795(70)90177-7. [DOI] [PubMed] [Google Scholar]
  28. Martland M., Robison R. Possible Significance of Hexosephosphoric Esters in Ossification: Part VI. Phosphoric Esters in Blood-Plasma. Biochem J. 1926;20(4):847–855. doi: 10.1042/bj0200847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfleger R. C., Anderson N. G., Snyder F. Lipid class and fatty acid composition of rat liver plasma membranes isolated by zonal centrifugation. Biochemistry. 1968 Aug;7(8):2826–2833. doi: 10.1021/bi00848a019. [DOI] [PubMed] [Google Scholar]
  31. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  32. Skipski V. P., Barclay M., Archibald F. M., Terebus-Kekish O., Reichman E. S., Good J. J. Lipid composition of rat liver cell membranes. Life Sci. 1965 Sep;4(17):1673–1680. doi: 10.1016/0024-3205(65)90213-4. [DOI] [PubMed] [Google Scholar]
  33. Stahl W. L., Trams E. G. Synthesis of lipids by liver plasma membranes. Incorporation of acyl-coenzyme A derivatives into membrane lipids in vitro. Biochim Biophys Acta. 1968 Dec 10;163(4):459–471. doi: 10.1016/0005-2736(68)90075-8. [DOI] [PubMed] [Google Scholar]
  34. Suzuki K., Poduslo J. F., Poduslo S. E. Further evidence for a specific ganglioside fraction closely associated with myelin. Biochim Biophys Acta. 1968 May 1;152(3):576–586. doi: 10.1016/0005-2760(68)90098-2. [DOI] [PubMed] [Google Scholar]
  35. Suzuki K., Poduslo S. E., Norton W. T. Gangliosides in the myelin fraction of developing rats. Biochim Biophys Acta. 1967 Oct 2;144(2):375–381. doi: 10.1016/0005-2760(67)90166-x. [DOI] [PubMed] [Google Scholar]
  36. Takayama K., MacLennan D. H., Tzagoloff A., Stoner C. D. Studies on the electron transfer system. LXVII. Polyacrylamide gel electrophoresis of the mitochondrial electron transfer complexes. Arch Biochem Biophys. 1966 Apr;114(1):223–230. doi: 10.1016/0003-9861(66)90324-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES