Abstract
1. Previous studies using renal brush-border membrane vesicles have established that both the pantothenate and the low Km (Michaelis-Menten constant), low Vmax (maximal rate) D-glucose systems have a stoichiometry of 2 Na+: 1 organic molecule. In this study, we compared the mechanisms by which the membrane potential energizes pantothenate and D-glucose uptakes by brush-border membrane vesicles isolated from the whole cortex of rabbit kidney. 2. In the absence of Na+, varying the membrane potential from +60 to -60 mV decreased pantothenate uptake, whereas D-glucose uptake was increased in a linear manner. These results suggested the existence of a conductive pathway for pantothenate in these membranes. They also suggested that the pantothenate free carrier is electroneutral, while the glucose free carrier is negatively charged. 3. In the presence of an inwardly directed Na+ gradient, varying the membrane potential from +60 to -60 mV increased Na(+)-dependent pantothenate influx linearly. In contrast, a shift from +60 to +40 mV in the membrane potential had no influence on Na(+)-dependent D-glucose influx, whereas influx was a linear function of the membrane potential from +40 to -60 mV, indicating that there is a threshold membrane potential required for membrane potential-dependent D-glucose movement to occur. 4. Kinetic studies revealed that the effect of membrane potential on pantothenate uptake is through changes in the Km, while Vmax was unchanged. On the other hand, the membrane potential exerted its effect on D-glucose transport solely on the Vmax. 5. Finally, binding studies revealed that membrane potential, both in the presence and absence of a Na+ gradient, elicited effects on phlorizin binding qualitatively similar to those observed for D-glucose transport. 6. Implications of these findings for tubular regulation of these electrogenic secondary active transport systems are discussed.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson P. S. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport. J Membr Biol. 1978 Jul 21;42(1):81–98. doi: 10.1007/BF01870395. [DOI] [PubMed] [Google Scholar]
- Aronson P. S., Sacktor B. Transport of D-glucose by brush border membranes isolated from the renal cortex. Biochim Biophys Acta. 1974 Jul 31;356(2):231–243. doi: 10.1016/0005-2736(74)90286-7. [DOI] [PubMed] [Google Scholar]
- Barbarat B., Podevin R. A. Pantothenate-sodium cotransport in renal brush-border membranes. J Biol Chem. 1986 Nov 5;261(31):14455–14460. [PubMed] [Google Scholar]
- Barbarat B., Podevin R. A. Stoichiometry of the renal sodium-L-lactate cotransporter. J Biol Chem. 1988 Sep 5;263(25):12190–12193. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Hilden S., Sacktor B. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium. Am J Physiol. 1982 Apr;242(4):F340–F345. doi: 10.1152/ajprenal.1982.242.4.F340. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Kessler M., Semenza G. The small-intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi. J Membr Biol. 1983;76(1):27–56. doi: 10.1007/BF01871452. [DOI] [PubMed] [Google Scholar]
- Kimmich G. A., Randles J. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+. Am J Physiol. 1988 Oct;255(4 Pt 1):C486–C494. doi: 10.1152/ajpcell.1988.255.4.C486. [DOI] [PubMed] [Google Scholar]
- Lever J. E. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding. Biochemistry. 1984 Sep 25;23(20):4697–4702. doi: 10.1021/bi00315a027. [DOI] [PubMed] [Google Scholar]
- Podevin R. A., Barbarat B. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. Biochim Biophys Acta. 1986 Apr 25;856(3):471–481. doi: 10.1016/0005-2736(86)90138-0. [DOI] [PubMed] [Google Scholar]
- Sacktor B. Sodium-coupled hexose transport. Kidney Int. 1989 Sep;36(3):342–350. doi: 10.1038/ki.1989.202. [DOI] [PubMed] [Google Scholar]
- Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
- Toggenburger G., Kessler M., Semenza G. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model. Biochim Biophys Acta. 1982 Jun 14;688(2):557–571. doi: 10.1016/0005-2736(82)90367-4. [DOI] [PubMed] [Google Scholar]
- Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
- Wright S. H., Hirayama B., Kaunitz J. D., Kippen I., Wright E. M. Kinetics of sodium succinate cotransport across renal brush-border membranes. J Biol Chem. 1983 May 10;258(9):5456–5462. [PubMed] [Google Scholar]
