Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Nov;443:123–136. doi: 10.1113/jphysiol.1991.sp018826

Cadmium uptake through the anion exchanger in human red blood cells.

M Lou 1, R Garay 1, J O Alda 1
PMCID: PMC1179834  PMID: 1822524

Abstract

1. The initial rate of Cd2+ uptake in human red cells was measured by atomic absorption spectrophotometry. 2. About 96% of Cd2+ uptake was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) with IC50 (concentration giving 50% of maximal inhibition) of 0.3 microM and by furosemide with IC50 of 500 microM and was resistant to ouabain and amiloride. This indicates the implication of the [Cl(-)-HCO3-] anion exchanger in Cd2+ uptake. 3. DIDS-sensitive Cd2+ uptake required the presence of external HCO3-. HCO3- ions had a biphasic effect on Cd2+ uptake. Low bicarbonate concentrations were stimulatory, suggesting formation of translocating bicarbonate-cadmium complexes. Higher bicarbonate concentrations were inhibitory, suggesting further bicarbonate complexation with formation of non-translocating species. Depending on the presence or absence of external Cl-, a maximal Cd2+ uptake of 1.7 or 0.37 mmol (l cells)-1 h-1 was observed at bicarbonate concentrations of 15.6 or 11 mM respectively. 4. In the presence of bicarbonate, external Cl- ions strongly stimulated Cd2+ uptake, with linear increase between 70 and 125 mM. This suggests that one translocating species may have chloride as ligand. 5. DIDS-sensitive Cd2+ uptake was modestly inhibited by physiological concentrations of external phosphate and was resistant to external K+, Mg2+ and Ca2+. 6. In conclusion, the anion exchanger is the major transport mechanism for red cell cadmium uptake. Translocating species appear to be monovalent anion complexes of cadmium with HCO3- such as [Cd(OH)(HCO3)2]- and [Cd(OH)(HCO3)Cl]-.

Full text

PDF
123

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alda J. O., Garay R. Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells. Am J Physiol. 1990 Oct;259(4 Pt 1):C570–C576. doi: 10.1152/ajpcell.1990.259.4.C570. [DOI] [PubMed] [Google Scholar]
  2. Becker B. F., Duhm J. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions. J Physiol. 1978 Sep;282:149–168. doi: 10.1113/jphysiol.1978.sp012454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Enger M. D., Hildebrand C. E., Stewart C. C. Cd2+ responses of cultured human blood cells. Toxicol Appl Pharmacol. 1983 Jun 30;69(2):214–224. doi: 10.1016/0041-008x(83)90302-2. [DOI] [PubMed] [Google Scholar]
  4. Foulkes E. C. On the mechanism of transfer of heavy metals across cell membranes. Toxicology. 1988 Nov 30;52(3):263–272. doi: 10.1016/0300-483x(88)90131-x. [DOI] [PubMed] [Google Scholar]
  5. Funder J. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism. Acta Physiol Scand. 1980 Jan;108(1):31–37. doi: 10.1111/j.1748-1716.1980.tb06497.x. [DOI] [PubMed] [Google Scholar]
  6. Funder J., Wieth J. O. Combined effects of digitalis therapy and of plasma bicarbonate on human red cell socium and potassium. Scand J Clin Lab Invest. 1974 Oct;34(2):153–160. [PubMed] [Google Scholar]
  7. Funder J., Wieth J. O. Human red cell sodium and potassium in metabolic alkalosis. Scand J Clin Lab Invest. 1974 Sep;34(1):49–59. doi: 10.3109/00365517409061821. [DOI] [PubMed] [Google Scholar]
  8. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garay R. P., Hannaert P. A., Nazaret C., Cragoe E. J., Jr The significance of the relative effects of loop diuretics and anti-brain edema agents on the Na+,K+,Cl- cotransport system and the Cl-/NaCO3- anion exchanger. Naunyn Schmiedebergs Arch Pharmacol. 1986 Oct;334(2):202–209. doi: 10.1007/BF00505823. [DOI] [PubMed] [Google Scholar]
  10. Garty M., Bracken W. M., Klaassen C. D. Cadmium uptake by rat red blood cells. Toxicology. 1986 Dec 15;42(2-3):111–119. doi: 10.1016/0300-483x(86)90002-8. [DOI] [PubMed] [Google Scholar]
  11. Garty M., Wong K. L., Klaassen C. D. Redistribution of cadmium to blood of rats. Toxicol Appl Pharmacol. 1981 Jul;59(3):548–554. doi: 10.1016/0041-008x(81)90309-4. [DOI] [PubMed] [Google Scholar]
  12. Jennings M. L. Kinetics and mechanism of anion transport in red blood cells. Annu Rev Physiol. 1985;47:519–533. doi: 10.1146/annurev.ph.47.030185.002511. [DOI] [PubMed] [Google Scholar]
  13. Kalfakakou V., Simons T. J. Anionic mechanisms of zinc uptake across the human red cell membrane. J Physiol. 1990 Feb;421:485–497. doi: 10.1113/jphysiol.1990.sp017957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pandey G. N., Sarkadi B., Haas M., Gunn R. B., Davis J. M., Tosteson D. C. Lithium transport pathways in human red blood cells. J Gen Physiol. 1978 Aug;72(2):233–247. doi: 10.1085/jgp.72.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schild L., Giebisch G., Karniski L., Aronson P. S. Chloride transport in the mammalian proximal tubule. Pflugers Arch. 1986;407 (Suppl 2):S156–S159. doi: 10.1007/BF00584945. [DOI] [PubMed] [Google Scholar]
  16. Simons T. J. The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol. 1986 Sep;378:287–312. doi: 10.1113/jphysiol.1986.sp016220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tanaka K., Min K. S., Onosaka S., Fukuhara C., Ueda M. The origin of metallothionein in red blood cells. Toxicol Appl Pharmacol. 1985 Mar 30;78(1):63–68. doi: 10.1016/0041-008x(85)90305-9. [DOI] [PubMed] [Google Scholar]
  18. Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
  19. Yost K. J. Cadmium, the environment and human health: an overview. Experientia. 1984 Feb 15;40(2):157–164. doi: 10.1007/BF01963579. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES