Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Nov;443:231–256. doi: 10.1113/jphysiol.1991.sp018832

Response of the medullary respiratory network of the cat to hypoxia.

D W Richter 1, A Bischoff 1, K Anders 1, M Bellingham 1, U Windhorst 1
PMCID: PMC1179840  PMID: 1822528

Abstract

1. The effect of systemic hypoxia was tested in anaesthetized, immobilized, thoracotomized and artificially ventilated cats with peripheral chemoreceptor afferents either intact or cut. Extracellular recordings from different types of medullary respiratory neurones and intracellular recordings from stage 2 expiratory neurones were made to determine the hypoxia-induced changes in neuronal discharge patterns and postsynaptic activity as an index for the disturbances of synaptic interaction within the network. 2. The general effect of systemic hypoxia was an initial augmentation of respiratory activity followed by a secondary depression. In chemoreceptor-denervated animals, secondary depression led to central apnoea. 3. The effects of systemic hypoxia were comparable with those of cerebral ischaemia following occlusion of carotid and vertebral arteries. 4. In chemoreceptor-denervated animals, all types of medullary respiratory neurones ceased spontaneous action potential discharge during hypoxia. 5. Reversal of inhibitory postsynaptic potentials (IPSPs) and/or blockade of IPSPs was seen after 2-3 min of hypoxia. 6. During hypoxia, the membrane potential of stage 2 expiratory neurones showed a slight depolarization to -45 to -55 mV and then remained stable. 7. The neurone input resistance increased initially and then decreased significantly during central apnoea. 8. Rhythmogenesis of respiration was greatly disturbed. This was due to blockade of IPSPs and, in some animals, to more complex disturbances of phase switching from inspiration to expiration. 9. Central apnoea occurred while respiratory neurones were still excitable as shown by stimulus-evoked orthodromic and antidromic action potentials. 10. The results indicate that the medullary respiratory network is directly affected by energy depletion. There is indication for a neurohumoral mechanism which blocks synaptic interaction between respiratory neurones in chemoreceptor-intact animals.

Full text

PDF
231

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carbone E., Lux H. D. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol. 1987 May;386:547–570. doi: 10.1113/jphysiol.1987.sp016551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Champagnat J., Denavit-Saubie M., Siggins G. R. Rhythmic neuronal activities in the nucleus of the tractus solitarius isolated in vitro. Brain Res. 1983 Nov 28;280(1):155–159. doi: 10.1016/0006-8993(83)91184-8. [DOI] [PubMed] [Google Scholar]
  3. Champagnat J., Denavit-Saubié M., Moyanova S., Rondouin G. Involvement of amino acids in periodic inhibitions of bulbar respiratory neurones. Brain Res. 1982 Apr 15;237(2):351–365. doi: 10.1016/0006-8993(82)90447-4. [DOI] [PubMed] [Google Scholar]
  4. Champagnat J., Jacquin T., Richter D. W. Voltage-dependent currents in neurones of the nuclei of the solitary tract of rat brainstem slices. Pflugers Arch. 1986 Apr;406(4):372–379. doi: 10.1007/BF00590939. [DOI] [PubMed] [Google Scholar]
  5. Dean J. B., Lawing W. L., Millhorn D. E. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res. 1989;76(3):656–661. doi: 10.1007/BF00248922. [DOI] [PubMed] [Google Scholar]
  6. Dunwiddie T. V., Haas H. L. Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. J Physiol. 1985 Dec;369:365–377. doi: 10.1113/jphysiol.1985.sp015907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eldridge F. L., Gill-Kumar P., Millhorn D. E. Input-output relationships of central neural circuits involved in respiration in cats. J Physiol. 1981 Feb;311:81–95. doi: 10.1113/jphysiol.1981.sp013574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Francis A., Pulsinelli W. The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res. 1982 Jul 15;243(2):271–278. doi: 10.1016/0006-8993(82)90250-5. [DOI] [PubMed] [Google Scholar]
  9. Fregosi R. F., Knuth S. L., Ward D. K., Bartlett D., Jr Hypoxia inhibits abdominal expiratory nerve activity. J Appl Physiol (1985) 1987 Jul;63(1):211–220. doi: 10.1152/jappl.1987.63.1.211. [DOI] [PubMed] [Google Scholar]
  10. Fujiwara N., Higashi H., Shimoji K., Yoshimura M. Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol. 1987 Mar;384:131–151. doi: 10.1113/jphysiol.1987.sp016447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gautier H., Remmers J. E., Bartlett D., Jr Control of the duration of expiration. Respir Physiol. 1973 Jul;18(2):205–221. doi: 10.1016/0034-5687(73)90051-0. [DOI] [PubMed] [Google Scholar]
  12. Gerber U., Greene R. W., Haas H. L., Stevens D. R. Characterization of inhibition mediated by adenosine in the hippocampus of the rat in vitro. J Physiol. 1989 Oct;417:567–578. doi: 10.1113/jphysiol.1989.sp017819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grunstein M. M., Hazinski T. A., Schlueter M. A. Respiratory control during hypoxia in newborn rabbits: implied action of endorphins. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jul;51(1):122–130. doi: 10.1152/jappl.1981.51.1.122. [DOI] [PubMed] [Google Scholar]
  14. HUGELIN A., COHEN M. I. The reticular activating system and respiratory regulation in the cat. Ann N Y Acad Sci. 1963 Jun 24;109:586–603. doi: 10.1111/j.1749-6632.1963.tb13489.x. [DOI] [PubMed] [Google Scholar]
  15. Haddad G. G., Donnelly D. F. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J Physiol. 1990 Oct;429:411–428. doi: 10.1113/jphysiol.1990.sp018265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haddad G. G., Mellins R. B. Hypoxia and respiratory control in early life. Annu Rev Physiol. 1984;46:629–643. doi: 10.1146/annurev.ph.46.030184.003213. [DOI] [PubMed] [Google Scholar]
  17. Haji A., Remmers J. E., Connelly C., Takeda R. Effects of glycine and GABA on bulbar respiratory neurons of cat. J Neurophysiol. 1990 May;63(5):955–965. doi: 10.1152/jn.1990.63.5.955. [DOI] [PubMed] [Google Scholar]
  18. Iversen K., Hedner T., Lundborg P. GABA concentrations and turnover in neonatal rat brain during asphyxia and recovery. Acta Physiol Scand. 1983 May;118(1):91–94. doi: 10.1111/j.1748-1716.1983.tb07247.x. [DOI] [PubMed] [Google Scholar]
  19. Krnjević K., Leblond J. Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J Neurophysiol. 1989 Jul;62(1):15–30. doi: 10.1152/jn.1989.62.1.15. [DOI] [PubMed] [Google Scholar]
  20. Lawson E. E., Richter D. W., Ballantyne D., Lalley P. M. Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. Pflugers Arch. 1989 Sep;414(5):523–533. doi: 10.1007/BF00580987. [DOI] [PubMed] [Google Scholar]
  21. Leblond J., Krnjevic K. Hypoxic changes in hippocampal neurons. J Neurophysiol. 1989 Jul;62(1):1–14. doi: 10.1152/jn.1989.62.1.1. [DOI] [PubMed] [Google Scholar]
  22. Maruyama R., Yoshida A., Fukuda Y. Differential sensitivity to hypoxic inhibition of respiratory processes in the anesthetized rat. Jpn J Physiol. 1989;39(6):857–871. doi: 10.2170/jjphysiol.39.857. [DOI] [PubMed] [Google Scholar]
  23. Mifflin S., Richter D. W. The effects of QX-314 on medullary respiratory neurones. Brain Res. 1987 Sep 8;420(1):22–31. doi: 10.1016/0006-8993(87)90235-6. [DOI] [PubMed] [Google Scholar]
  24. Millhorn D. E., Eldridge F. L., Waldrop T. G. Prolonged stimulation of respiration by endogenous central serotonin. Respir Physiol. 1980 Dec;42(3):171–188. doi: 10.1016/0034-5687(80)90113-9. [DOI] [PubMed] [Google Scholar]
  25. Neubauer J. A., Melton J. E., Edelman N. H. Modulation of respiration during brain hypoxia. J Appl Physiol (1985) 1990 Feb;68(2):441–451. doi: 10.1152/jappl.1990.68.2.441. [DOI] [PubMed] [Google Scholar]
  26. Richter D. W., Camerer H., Sonnhof U. Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones. Pflugers Arch. 1978 Sep 6;376(2):139–149. doi: 10.1007/BF00581577. [DOI] [PubMed] [Google Scholar]
  27. Richter D. W. Generation and maintenance of the respiratory rhythm. J Exp Biol. 1982 Oct;100:93–107. doi: 10.1242/jeb.100.1.93. [DOI] [PubMed] [Google Scholar]
  28. Rothman S. M. Synaptic activity mediates death of hypoxic neurons. Science. 1983 Apr 29;220(4596):536–537. doi: 10.1126/science.6836300. [DOI] [PubMed] [Google Scholar]
  29. Runold M., Lagercrantz H., Prabhakar N. R., Fredholm B. B. Role of adenosine in hypoxic ventilatory depression. J Appl Physiol (1985) 1989 Aug;67(2):541–546. doi: 10.1152/jappl.1989.67.2.541. [DOI] [PubMed] [Google Scholar]
  30. Sears T. A., Berger A. J., Phillipson E. A. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature. 1982 Oct 21;299(5885):728–730. doi: 10.1038/299728a0. [DOI] [PubMed] [Google Scholar]
  31. St John W. M., Bianchi A. L. Responses of bulbospinal and laryngeal respiratory neurons to hypercapnia and hypoxia. J Appl Physiol (1985) 1985 Oct;59(4):1201–1207. doi: 10.1152/jappl.1985.59.4.1201. [DOI] [PubMed] [Google Scholar]
  32. St John W. M. Neurogenesis, control, and functional significance of gasping. J Appl Physiol (1985) 1990 Apr;68(4):1305–1315. doi: 10.1152/jappl.1990.68.4.1305. [DOI] [PubMed] [Google Scholar]
  33. Takahashi T., Berger A. J. Direct excitation of rat spinal motoneurones by serotonin. J Physiol. 1990 Apr;423:63–76. doi: 10.1113/jphysiol.1990.sp018011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trippenbach T., Richter D. W., Acker H. Hypoxia and ion activities within the brain stem of newborn rabbits. J Appl Physiol (1985) 1990 Jun;68(6):2494–2503. doi: 10.1152/jappl.1990.68.6.2494. [DOI] [PubMed] [Google Scholar]
  35. Walz W., Mukerji S. Lactate release from cultured astrocytes and neurons: a comparison. Glia. 1988;1(6):366–370. doi: 10.1002/glia.440010603. [DOI] [PubMed] [Google Scholar]
  36. Weiskoff R. B., Gabel R. A. Depression of ventilation hypoxia in man. J Appl Physiol. 1975 Dec;39(6):911–915. doi: 10.1152/jappl.1975.39.6.911. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES