Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Dec;444:1–24. doi: 10.1113/jphysiol.1991.sp018863

What makes blood vessels grow?

O Hudlicka 1
PMCID: PMC1179918  PMID: 1822546

Full text

PDF
i5

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol. 1977 Sep;270(3):677–690. doi: 10.1113/jphysiol.1977.sp011975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando J., Nomura H., Kamiya A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc Res. 1987 Jan;33(1):62–70. doi: 10.1016/0026-2862(87)90007-0. [DOI] [PubMed] [Google Scholar]
  3. Banchero N., Kayar S. R., Lechner A. J. Increased capillarity in skeletal muscle of growing guinea pigs acclimated to cold and hypoxia. Respir Physiol. 1985 Nov;62(2):245–255. doi: 10.1016/0034-5687(85)90118-5. [DOI] [PubMed] [Google Scholar]
  4. Brown M. D., Cotter M. A., Hudlická O., Vrbová G. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflugers Arch. 1976 Feb 24;361(3):241–250. doi: 10.1007/BF00587288. [DOI] [PubMed] [Google Scholar]
  5. D'Amore P. A., Thompson R. W. Mechanisms of angiogenesis. Annu Rev Physiol. 1987;49:453–464. doi: 10.1146/annurev.ph.49.030187.002321. [DOI] [PubMed] [Google Scholar]
  6. Dawson J. M., Hudlicka O. The effect of long-term activity on the microvasculature of rat glycolytic skeletal muscle. Int J Microcirc Clin Exp. 1989 Feb;8(1):53–69. [PubMed] [Google Scholar]
  7. Dawson J. M., Hudlická O. The effects of long term administration of prazosin on the microcirculation in skeletal muscles. Cardiovasc Res. 1989 Nov;23(11):913–920. doi: 10.1093/cvr/23.11.913. [DOI] [PubMed] [Google Scholar]
  8. Dawson J. M., Tyler K. R., Hudlicka O. A comparison of the microcirculation in rat fast glycolytic and slow oxidative muscles at rest and during contractions. Microvasc Res. 1987 Mar;33(2):167–182. doi: 10.1016/0026-2862(87)90015-x. [DOI] [PubMed] [Google Scholar]
  9. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  10. Fronek K., Zweifach B. W. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol. 1975 Mar;228(3):791–796. doi: 10.1152/ajplegacy.1975.228.3.791. [DOI] [PubMed] [Google Scholar]
  11. Gollnick P. D., Piehl K., Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974 Aug;241(1):45–57. doi: 10.1113/jphysiol.1974.sp010639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAKKILA J. Studies on the myocardial capillary concentration in cardiac hypertrophy due to training; an experimental study with guinea pigs. Ann Med Exp Biol Fenn. 1955;33(Suppl 10):1–82. [PubMed] [Google Scholar]
  13. Holm J., Björntorp P., Scherstén T. Metabolic activity in human skeletal muscle. Effect of peripheral arterial insufficiency. Eur J Clin Invest. 1972 Aug;2(5):321–325. doi: 10.1111/j.1365-2362.1972.tb00657.x. [DOI] [PubMed] [Google Scholar]
  14. Hudlicka O., Hoppeler H., Uhlmann E. Relationship between the size of the capillary bed and oxidative capacity in various cat skeletal muscles. Pflugers Arch. 1987 Nov;410(4-5):369–375. doi: 10.1007/BF00586513. [DOI] [PubMed] [Google Scholar]
  15. Hudlicka O., Price S. The role of blood flow and/or muscle hypoxia in capillary growth in chronically stimulated fast muscles. Pflugers Arch. 1990 Sep;417(1):67–72. doi: 10.1007/BF00370770. [DOI] [PubMed] [Google Scholar]
  16. Hudlicka O., Tyler K. R. The effect of long-term high-frequency stimulation on capillary density and fibre types in rabbit fast muscles. J Physiol. 1984 Aug;353:435–445. doi: 10.1113/jphysiol.1984.sp015345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudlicka O., West D., Kumar S., el Khelly F., Wright A. J. Can growth of capillaries in the heart and skeletal muscle be explained by the presence of an angiogenic factor? Br J Exp Pathol. 1989 Jun;70(3):237–246. [PMC free article] [PubMed] [Google Scholar]
  18. Hudlicka O., Wright A. J., Hoppeler H., Uhlmann E. The effect of chronic bradycardial pacing on the oxidative capacity in rabbit hearts. Respir Physiol. 1988 Apr;72(1):1–12. doi: 10.1016/0034-5687(88)90074-6. [DOI] [PubMed] [Google Scholar]
  19. Hudlická O., Dodd L., Renkin E. M., Gray S. D. Early changes in fiber profile and capillary density in long-term stimulated muscles. Am J Physiol. 1982 Oct;243(4):H528–H535. doi: 10.1152/ajpheart.1982.243.4.H528. [DOI] [PubMed] [Google Scholar]
  20. Ingber D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A. 1990 May;87(9):3579–3583. doi: 10.1073/pnas.87.9.3579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ingjer F. Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol. 1979 Sep;294:419–432. doi: 10.1113/jphysiol.1979.sp012938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Joplin R. E., Franchi L. L., Salmons S. Changes in the size and synthetic activity of nuclear populations in chronically stimulated rabbit skeletal muscle. J Anat. 1987 Dec;155:39–50. [PMC free article] [PubMed] [Google Scholar]
  23. Kumar S., West D., Shahabuddin S., Arnold F., Haboubi N., Reid H., Carr T. Angiogenesis factor from human myocardial infarcts. Lancet. 1983 Aug 13;2(8346):364–368. doi: 10.1016/s0140-6736(83)90343-4. [DOI] [PubMed] [Google Scholar]
  24. Mall G., Mattfeldt T., Rieger P., Volk B., Frolov V. A. Morphometric analysis of the rabbit myocardium after chronic ethanol feeding - early capillary changes. Basic Res Cardiol. 1982 Jan-Feb;77(1):57–67. doi: 10.1007/BF01908131. [DOI] [PubMed] [Google Scholar]
  25. Mall G., Mattfeldt T., Volk B. Ultrastructural morphometric study on the rat heart after chronic ethanol feeding. Virchows Arch A Pathol Anat Histol. 1980;389(1):59–77. doi: 10.1007/BF00428668. [DOI] [PubMed] [Google Scholar]
  26. Miller A. T., Jr, Hale D. M. Increased vascularity of brain, heart, and skeletal muscle of polycythemic rats. Am J Physiol. 1970 Sep;219(3):702–704. doi: 10.1152/ajplegacy.1970.219.3.702. [DOI] [PubMed] [Google Scholar]
  27. Myrhage R., Hudlická O. Capillary growth in chronically stimulated adult skeletal muscle as studied by intravital microscopy and histological methods in rabbits and rats. Microvasc Res. 1978 Jul;16(1):73–90. doi: 10.1016/0026-2862(78)90046-8. [DOI] [PubMed] [Google Scholar]
  28. NORTH K. A., SANDERS A. G. The development of collateral circulation in the mouse's ear. Circ Res. 1958 Nov;6(6):721–727. doi: 10.1161/01.res.6.6.721. [DOI] [PubMed] [Google Scholar]
  29. Pette D., Smith M. E., Staudte H. W., Vrbová G. Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflugers Arch. 1973 Feb 6;338(3):257–272. doi: 10.1007/BF00587391. [DOI] [PubMed] [Google Scholar]
  30. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  31. Rakusan K., Ost'ádal B., Wachtlová M. The influence of muscular work on the capillary density in the heart and skeletal muscle of pigeon (Columbia livia dom.). Can J Physiol Pharmacol. 1971 Mar;49(3):167–170. doi: 10.1139/y71-023. [DOI] [PubMed] [Google Scholar]
  32. SANDERS A. G. Neovascularization in ocular disease. Trans Ophthalmol Soc U K. 1961;81:163–172. [PubMed] [Google Scholar]
  33. SCHOEFL G. I. STUDIES ON INFLAMMATION. III. GROWING CAPILLARIES: THEIR STRUCTURE AND PERMEABILITY. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Nov 8;337:97–141. [PubMed] [Google Scholar]
  34. Salmons S., Vrbová G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol. 1969 May;201(3):535–549. doi: 10.1113/jphysiol.1969.sp008771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schaper W., Sharma H. S., Quinkler W., Markert T., Wünsch M., Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol. 1990 Mar 1;15(3):513–518. doi: 10.1016/0735-1097(90)90618-y. [DOI] [PubMed] [Google Scholar]
  36. Schweigerer L., Neufeld G., Friedman J., Abraham J. A., Fiddes J. C., Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature. 1987 Jan 15;325(6101):257–259. doi: 10.1038/325257a0. [DOI] [PubMed] [Google Scholar]
  37. Sillau A. H., Aquin L., Lechner A. J., Bui M. V., Banchero N. Increased capillary supply in skeletal muscle of guinea pigs acclimated to cold. Respir Physiol. 1980 Dec;42(3):233–245. doi: 10.1016/0034-5687(80)90117-6. [DOI] [PubMed] [Google Scholar]
  38. Tillmanns H., Ikeda S., Hansen H., Sarma J. S., Fauvel J. M., Bing R. J. Microcirculation in the ventricle of the dog and turtle. Circ Res. 1974 Apr;34(4):561–569. doi: 10.1161/01.res.34.4.561. [DOI] [PubMed] [Google Scholar]
  39. Tomanek R. J. Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec. 1970 May;167(1):55–62. doi: 10.1002/ar.1091670106. [DOI] [PubMed] [Google Scholar]
  40. Tornling G., Adolfsson J., Unge G., Ljungqvist A. Capillary neoformation in skeletal muscle of dipyridamole-treated rats. Arzneimittelforschung. 1980;30(5):791–792. [PubMed] [Google Scholar]
  41. Unge G., Carlsson S., Ljungqvist A., Tornling G., Adolfsson J. The proliferative activity of myocardial capillary wall cells in variously aged swimming-exercised rats. Acta Pathol Microbiol Scand A. 1979 Jan;87(1):15–17. doi: 10.1111/j.1699-0463.1979.tb00018.x. [DOI] [PubMed] [Google Scholar]
  42. VALDIVIA E. Total capillary bed in striated muscles of guinea pigs native to the Peruvian mountains. Am J Physiol. 1958 Sep;194(3):585–589. doi: 10.1152/ajplegacy.1958.194.3.585. [DOI] [PubMed] [Google Scholar]
  43. Wachtlová M., Rakusan K., Poupa O. The coronary terminal vascular bed in the heart of the hare (Lepus europeus) and the rabbit (Oryctolagus domesticus). Physiol Bohemoslov. 1965;14(4):328–331. [PubMed] [Google Scholar]
  44. Wachtlová M., Rakusan K., Roth Z., Poupa O. The terminal vascular bed of the myocardium in the wild rat (Rattus norvegicus) and the laboratory rat (Rattus norvegicus lab.). Physiol Bohemoslov. 1967;16(6):548–554. [PubMed] [Google Scholar]
  45. Watson P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. doi: 10.1096/fasebj.5.7.1707019. [DOI] [PubMed] [Google Scholar]
  46. Wright A. J., Hudlicka O., Brown M. D. Beneficial effect of chronic bradycardial pacing on capillary growth and heart performance in volume overload heart hypertrophy. Circ Res. 1989 Jun;64(6):1205–1212. doi: 10.1161/01.res.64.6.1205. [DOI] [PubMed] [Google Scholar]
  47. Wright A. J., Hudlicka O. Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res. 1981 Aug;49(2):469–478. doi: 10.1161/01.res.49.2.469. [DOI] [PubMed] [Google Scholar]
  48. Ziada A. M., Hudlicka O., Tyler K. R., Wright A. J. The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res. 1984 Dec;18(12):724–732. doi: 10.1093/cvr/18.12.724. [DOI] [PubMed] [Google Scholar]
  49. Ziada A., Hudlicka O., Tyler K. R. The effect of long-term administration of alpha 1-blocker prazosin on capillary density in cardiac and skeletal muscle. Pflugers Arch. 1989 Dec;415(3):355–360. doi: 10.1007/BF00370888. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES